demo_gradcam.py 7.03 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp

import mmcv
import numpy as np
import torch
from mmcv import Config, DictAction
from mmcv.parallel import collate, scatter

from mmaction.apis import init_recognizer
from mmaction.datasets.pipelines import Compose
from mmaction.utils import GradCAM


def parse_args():
    parser = argparse.ArgumentParser(description='MMAction2 GradCAM demo')

    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file/url')
    parser.add_argument('video', help='video file/url or rawframes directory')
    parser.add_argument(
        '--use-frames',
        default=False,
        action='store_true',
        help='whether to use rawframes as input')
    parser.add_argument(
        '--device', type=str, default='cuda:0', help='CPU/CUDA device option')
    parser.add_argument(
        '--target-layer-name',
        type=str,
        default='backbone/layer4/1/relu',
        help='GradCAM target layer name')
    parser.add_argument('--out-filename', default=None, help='output filename')
    parser.add_argument('--fps', default=5, type=int)
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        default={},
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. For example, '
        "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
    parser.add_argument(
        '--target-resolution',
        nargs=2,
        default=None,
        type=int,
        help='Target resolution (w, h) for resizing the frames when using a '
        'video as input. If either dimension is set to -1, the frames are '
        'resized by keeping the existing aspect ratio')
    parser.add_argument(
        '--resize-algorithm',
        default='bilinear',
        help='resize algorithm applied to generate video & gif')

    args = parser.parse_args()
    return args


def build_inputs(model, video_path, use_frames=False):
    """build inputs for GradCAM.

    Note that, building inputs for GradCAM is exactly the same as building
    inputs for Recognizer test stage. Codes from `inference_recognizer`.

    Args:
        model (nn.Module): Recognizer model.
        video_path (str): video file/url or rawframes directory.
        use_frames (bool): whether to use rawframes as input.
    Returns:
        dict: Both GradCAM inputs and Recognizer test stage inputs,
            including two keys, ``imgs`` and ``label``.
    """
    if not (osp.exists(video_path) or video_path.startswith('http')):
        raise RuntimeError(f"'{video_path}' is missing")

    if osp.isfile(video_path) and use_frames:
        raise RuntimeError(
            f"'{video_path}' is a video file, not a rawframe directory")
    if osp.isdir(video_path) and not use_frames:
        raise RuntimeError(
            f"'{video_path}' is a rawframe directory, not a video file")

    cfg = model.cfg
    device = next(model.parameters()).device  # model device

    # build the data pipeline
    test_pipeline = cfg.data.test.pipeline
    test_pipeline = Compose(test_pipeline)
    # prepare data
    if use_frames:
        filename_tmpl = cfg.data.test.get('filename_tmpl', 'img_{:05}.jpg')
        modality = cfg.data.test.get('modality', 'RGB')
        start_index = cfg.data.test.get('start_index', 1)
        data = dict(
            frame_dir=video_path,
            total_frames=len(os.listdir(video_path)),
            label=-1,
            start_index=start_index,
            filename_tmpl=filename_tmpl,
            modality=modality)
    else:
        start_index = cfg.data.test.get('start_index', 0)
        data = dict(
            filename=video_path,
            label=-1,
            start_index=start_index,
            modality='RGB')
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]

    return data


def _resize_frames(frame_list,
                   scale,
                   keep_ratio=True,
                   interpolation='bilinear'):
    """resize frames according to given scale.

    Codes are modified from `mmaction2/datasets/pipelines/augmentation.py`,
    `Resize` class.

    Args:
        frame_list (list[np.ndarray]): frames to be resized.
        scale (tuple[int]): If keep_ratio is True, it serves as scaling
            factor or maximum size: the image will be rescaled as large
            as possible within the scale. Otherwise, it serves as (w, h)
            of output size.
        keep_ratio (bool): If set to True, Images will be resized without
            changing the aspect ratio. Otherwise, it will resize images to a
            given size. Default: True.
        interpolation (str): Algorithm used for interpolation:
            "nearest" | "bilinear". Default: "bilinear".
    Returns:
        list[np.ndarray]: Both GradCAM and Recognizer test stage inputs,
            including two keys, ``imgs`` and ``label``.
    """
    if scale is None or (scale[0] == -1 and scale[1] == -1):
        return frame_list
    scale = tuple(scale)
    max_long_edge = max(scale)
    max_short_edge = min(scale)
    if max_short_edge == -1:
        scale = (np.inf, max_long_edge)

    img_h, img_w, _ = frame_list[0].shape

    if keep_ratio:
        new_w, new_h = mmcv.rescale_size((img_w, img_h), scale)
    else:
        new_w, new_h = scale

    frame_list = [
        mmcv.imresize(img, (new_w, new_h), interpolation=interpolation)
        for img in frame_list
    ]

    return frame_list


def main():
    args = parse_args()

    # assign the desired device.
    device = torch.device(args.device)

    cfg = Config.fromfile(args.config)
    cfg.merge_from_dict(args.cfg_options)

    # build the recognizer from a config file and checkpoint file/url
    model = init_recognizer(cfg, args.checkpoint, device=device)

    inputs = build_inputs(model, args.video, use_frames=args.use_frames)
    gradcam = GradCAM(model, args.target_layer_name)
    results = gradcam(inputs)

    if args.out_filename is not None:
        try:
            from moviepy.editor import ImageSequenceClip
        except ImportError:
            raise ImportError('Please install moviepy to enable output file.')

        # frames_batches shape [B, T, H, W, 3], in RGB order
        frames_batches = (results[0] * 255.).numpy().astype(np.uint8)
        frames = frames_batches.reshape(-1, *frames_batches.shape[-3:])

        frame_list = list(frames)
        frame_list = _resize_frames(
            frame_list,
            args.target_resolution,
            interpolation=args.resize_algorithm)

        video_clips = ImageSequenceClip(frame_list, fps=args.fps)
        out_type = osp.splitext(args.out_filename)[1][1:]
        if out_type == 'gif':
            video_clips.write_gif(args.out_filename)
        else:
            video_clips.write_videofile(args.out_filename, remove_temp=True)


if __name__ == '__main__':
    main()