README_zh-CN.md 10.5 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# BSN

## 简介

<!-- [ALGORITHM] -->

```BibTeX
@inproceedings{lin2018bsn,
  title={Bsn: Boundary sensitive network for temporal action proposal generation},
  author={Lin, Tianwei and Zhao, Xu and Su, Haisheng and Wang, Chongjing and Yang, Ming},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={3--19},
  year={2018}
}
```

## 模型库

### ActivityNet feature

| 配置文件                                 |      特征      | GPU 数量 | 预训练 | AR@100 |  AUC  | GPU 显存占用 (M) |     迭代时间 (s)      |                                                                                                                                                                                   ckpt                                                                                                                                                                                    |                                                                                                                                                                 log                                                                                                                                                                 |                                                                                                                                                                       json                                                                                                                                                                       |
| :--------------------------------------- | :------------: | :------: | :----: | :----: | :---: | :--------------: | :-------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| bsn_400x100_1x16_20e_activitynet_feature | cuhk_mean_100  |    1     |  None  | 74.66  | 66.45 | 41(TEM)+25(PEM)  | 0.074(TEM)+0.036(PEM) | [ckpt_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_activitynet_feature/bsn_tem_400x100_1x16_20e_activitynet_feature_20200619-cd6accc3.pth) [ckpt_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_activitynet_feature/bsn_pem_400x100_1x16_20e_activitynet_feature_20210203-1c27763d.pth) | [log_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_activitynet_feature/bsn_tem_400x100_1x16_20e_activitynet_feature.log) [log_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_activitynet_feature/bsn_pem_400x100_1x16_20e_activitynet_feature.log) | [json_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_activitynet_feature/bsn_tem_400x100_1x16_20e_activitynet_feature.log.json)  [json_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_activitynet_feature/bsn_pem_400x100_1x16_20e_activitynet_feature.log.json) |
|                                          | mmaction_video |    1     |  None  | 74.93  | 66.74 | 41(TEM)+25(PEM)  | 0.074(TEM)+0.036(PEM) |           [ckpt_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_mmaction_video/bsn_tem_400x100_1x16_20e_mmaction_video_20200809-ad6ec626.pth) [ckpt_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_mmaction_video/bsn_pem_400x100_1x16_20e_mmaction_video_20200809-aa861b26.pth)           |  [log_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_mmaction_video/bsn_tem_400x100_1x16_20e_mmaction_video_20200809.log) [log_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_mmaction_video/bsn_pem_400x100_1x16_20e_mmaction_video_20200809.log)  |      [json_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_mmaction_video/bsn_tem_400x100_1x16_20e_mmaction_video_20200809.json) [json_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_mmaction_video/bsn_pem_400x100_1x16_20e_mmaction_video_20200809.json)       |
|                                          | mmaction_clip  |    1     |  None  | 75.19  | 66.81 | 41(TEM)+25(PEM)  | 0.074(TEM)+0.036(PEM) |             [ckpt_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_mmaction_clip/bsn_tem_400x100_1x16_20e_mmaction_clip_20200809-0a563554.pth) [ckpt_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_mmaction_clip/bsn_pem_400x100_1x16_20e_mmaction_clip_20200809-e32f61e6.pth)             |    [log_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_mmaction_clip/bsn_tem_400x100_1x16_20e_mmaction_clip_20200809.log) [log_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_mmaction_clip/bsn_pem_400x100_1x16_20e_mmaction_clip_20200809.log)    |        [json_tem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_tem_400x100_1x16_20e_mmaction_clip/bsn_tem_400x100_1x16_20e_mmaction_clip_20200809.json) [json_pem](https://download.openmmlab.com/mmaction/localization/bsn/bsn_pem_400x100_1x16_20e_mmaction_clip/bsn_pem_400x100_1x16_20e_mmaction_clip_20200809.json)         |

注:

1. 这里的 **GPU 数量** 指的是得到模型权重文件对应的 GPU 个数。默认地,MMAction2 所提供的配置文件对应使用 8 块 GPU 进行训练的情况。
   依据 [线性缩放规则](https://arxiv.org/abs/1706.02677),当用户使用不同数量的 GPU 或者每块 GPU 处理不同视频个数时,需要根据批大小等比例地调节学习率。
   如,lr=0.01 对应 4 GPUs x 2 video/gpu,以及 lr=0.08 对应 16 GPUs x 4 video/gpu。
2. 对于 **特征** 这一列,`cuhk_mean_100` 表示所使用的特征为利用 [anet2016-cuhk](https://github.com/yjxiong/anet2016-cuhk) 代码库抽取的,被广泛利用的 CUHK ActivityNet 特征,
   `mmaction_video``mmaction_clip` 分布表示所使用的特征为利用 MMAction 抽取的,视频级别 ActivityNet 预训练模型的特征;视频片段级别 ActivityNet 预训练模型的特征。

对于数据集准备的细节,用户可参考 [数据集准备文档](/docs/zh_cn/data_preparation.md) 中的 ActivityNet 特征部分。

## 如何训练

用户可以使用以下指令进行模型训练。

```shell
python tools/train.py ${CONFIG_FILE} [optional arguments]
```

例如:

1. 在 ActivityNet 特征上训练 BSN(TEM) 模型。

   ```shell
   python tools/train.py configs/localization/bsn/bsn_tem_400x100_1x16_20e_activitynet_feature.py
   ```

2. 基于 PGM 的结果训练 BSN(PEM)。

   ```shell
   python tools/train.py configs/localization/bsn/bsn_pem_400x100_1x16_20e_activitynet_feature.py
   ```

更多训练细节,可参考 [基础教程](/docs/zh_cn/getting_started.md#训练配置) 中的 **训练配置** 部分。

## 如何进行推理

用户可以使用以下指令进行模型推理。

1. 推理 TEM 模型。

   ```shell
   # Note: This could not be evaluated.
   python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
   ```

2. 推理 PGM 模型

   ```shell
   python tools/misc/bsn_proposal_generation.py ${CONFIG_FILE} [--mode ${MODE}]
   ```

3. 推理 PEM 模型

   ```shell
   python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
   ```

例如

1. 利用预训练模型进行 BSN(TEM) 模型的推理。

   ```shell
   python tools/test.py configs/localization/bsn/bsn_tem_400x100_1x16_20e_activitynet_feature.py checkpoints/SOME_CHECKPOINT.pth
   ```

2. 利用预训练模型进行 BSN(PGM) 模型的推理

   ```shell
   python tools/misc/bsn_proposal_generation.py configs/localization/bsn/bsn_pgm_400x100_activitynet_feature.py --mode train
   ```

3. 推理 BSN(PEM) 模型,并计算 'AR@AN' 指标,输出结果文件。

   ```shell
   # 注:如果需要进行指标验证,需确测试数据的保标注文件包含真实标签
   python tools/test.py configs/localization/bsn/bsn_pem_400x100_1x16_20e_activitynet_feature.py  checkpoints/SOME_CHECKPOINT.pth  --eval AR@AN --out results.json
   ```

## 如何测试

用户可以使用以下指令进行模型测试。

1. TEM

   ```shell
   # 注:该命令无法进行指标验证
   python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
   ```

2. PGM

   ```shell
   python tools/misc/bsn_proposal_generation.py ${CONFIG_FILE} [--mode ${MODE}]
   ```

3. PEM

   ```shell
   python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
   ```

例如:

1. 在 ActivityNet 数据集上测试 TEM 模型。

   ```shell
   python tools/test.py configs/localization/bsn/bsn_tem_400x100_1x16_20e_activitynet_feature.py checkpoints/SOME_CHECKPOINT.pth
   ```

2. 在 ActivityNet 数据集上测试 PGM 模型。

   ```shell
   python tools/misc/bsn_proposal_generation.py configs/localization/bsn/bsn_pgm_400x100_activitynet_feature.py --mode test
   ```

3. 测试 PEM 模型,并计算 'AR@AN' 指标,输出结果文件。

   ```shell
   python tools/test.py configs/localization/bsn/bsn_pem_400x100_1x16_20e_activitynet_feature.py checkpoints/SOME_CHECKPOINT.pth --eval AR@AN --out results.json
   ```

注:

1. (可选项) 用户可以使用以下指令生成格式化的时序动作候选文件,该文件可被送入动作识别器中(目前只支持 SSN 和 P-GCN,不包括 TSN, I3D 等),以获得时序动作候选的分类结果。

   ```shell
   python tools/data/activitynet/convert_proposal_format.py
   ```

更多测试细节,可参考 [基础教程](/docs/zh_cn/getting_started.md#测试某个数据集) 中的 **测试某个数据集** 部分。