README.md 21.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# 训练方法
运行train.sh脚本进行训练

run_pretraining.sh脚本为FlagPerf使用

# 原README.md

<div align="center">
  <img src="http://10.0.53.25:9090/cmcc-ailab/tsm/raw/master/resources/mmaction2_logo.png" width="600"/>
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>

[![Documentation](https://readthedocs.org/projects/mmaction2/badge/?version=latest)](https://mmaction2.readthedocs.io/en/latest/)
[![actions](https://github.com/open-mmlab/mmaction2/workflows/build/badge.svg)](https://github.com/open-mmlab/mmaction2/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmaction2/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmaction2)
[![PyPI](https://img.shields.io/pypi/v/mmaction2)](https://pypi.org/project/mmaction2/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/issues)

[📘Documentation](https://mmaction2.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmaction2.readthedocs.io/en/latest/install.html) |
[👀Model Zoo](https://mmaction2.readthedocs.io/en/latest/modelzoo.html) |
[🆕Update News](https://mmaction2.readthedocs.io/en/latest/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmaction2/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmaction2/issues/new/choose)

</div>

English | [简体中文](/README_zh-CN.md)

## Introduction

MMAction2 is an open-source toolbox for video understanding based on PyTorch.
It is a part of the [OpenMMLab](https://openmmlab.com/) project.

The master branch works with **PyTorch 1.5+**.

<div align="center">
  <div style="float:left;margin-right:10px;">
  <img src="http://10.0.53.25:9090/cmcc-ailab/tsm/raw/master/resources/mmaction2_overview.gif" width="380px"><br>
    <p style="font-size:1.5vw;">Action Recognition Results on Kinetics-400</p>
  </div>
  <div style="float:right;margin-right:0px;">
  <img src="https://user-images.githubusercontent.com/34324155/123989146-2ecae680-d9fb-11eb-916b-b9db5563a9e5.gif" width="380px"><br>
    <p style="font-size:1.5vw;">Skeleton-based Action Recognition Results on NTU-RGB+D-120</p>
  </div>
</div>
<div align="center">
  <img src="https://user-images.githubusercontent.com/30782254/155710881-bb26863e-fcb4-458e-b0c4-33cd79f96901.gif" width="580px"/><br>
    <p style="font-size:1.5vw;">Skeleton-based Spatio-Temporal Action Detection and Action Recognition Results on Kinetics-400</p>
</div>
<div align="center">
  <img src="http://10.0.53.25:9090/cmcc-ailab/tsm/raw/master/resources/spatio-temporal-det.gif" width="800px"/><br>
    <p style="font-size:1.5vw;">Spatio-Temporal Action Detection Results on AVA-2.1</p>
</div>

## Major Features

- **Modular design**: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules.

- **Support four major video understanding tasks**: MMAction2 implements various algorithms for multiple video understanding tasks, including action recognition, action localization, spatio-temporal action detection, and skeleton-based action detection. We support **27** different algorithms and **20** different datasets for the four major tasks.

- **Well tested and documented**: We provide detailed documentation and API reference, as well as unit tests.

## What's New

### 🌟 Preview of 1.x version

A brand new version of **MMAction2 v1.0.0rc0** was released in 01/09/2022:

- Unified interfaces of all components based on [MMEngine](https://github.com/open-mmlab/mmengine).
- Faster training and testing speed with complete support of mixed precision training.
- More flexible [architecture](https://mmaction2.readthedocs.io/en/1.x).

Find more new features in [1.x branch](https://github.com/open-mmlab/mmaction2/tree/1.x). Issues and PRs are welcome!

### 💎 Stable version

- (2022-03-04) We support **Multigrid** on Kinetics400, achieve 76.07% Top-1 accuracy and accelerate training speed.
- (2021-11-24) We support **2s-AGCN** on NTU60 XSub, achieve 86.06% Top-1 accuracy on joint stream and 86.89% Top-1 accuracy on bone stream respectively.
- (2021-10-29) We provide a demo for skeleton-based and rgb-based spatio-temporal detection and action recognition (demo/demo_video_structuralize.py).
- (2021-10-26) We train and test **ST-GCN** on NTU60 with 3D keypoint annotations, achieve 84.61% Top-1 accuracy (higher than 81.5% in the [paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17135)).
- (2021-10-25) We provide a script(tools/data/skeleton/gen_ntu_rgbd_raw.py) to convert the NTU60 and NTU120 3D raw skeleton data to our format.
- (2021-10-25) We provide a [guide](https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/posec3d/custom_dataset_training.md) on how to train PoseC3D with custom datasets, [bit-scientist](https://github.com/bit-scientist) authored this PR!
- (2021-10-16) We support **PoseC3D** on UCF101 and HMDB51, achieves 87.0% and 69.3% Top-1 accuracy with 2D skeletons only. Pre-extracted 2D skeletons are also available.

**Release**: v0.24.0 was released in 05/05/2022. Please refer to [changelog.md](docs/en/changelog.md) for details and release history.

## Installation

MMAction2 depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv), [MMDetection](https://github.com/open-mmlab/mmdetection) (optional), and [MMPose](https://github.com/open-mmlab/mmdetection)(optional).
Below are quick steps for installation.
Please refer to [install.md](docs/en/install.md) for more detailed instruction.

```shell
conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
mim install mmdet  # optional
mim install mmpose  # optional
git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
pip3 install -e .
```

## Get Started

Please see [getting_started.md](docs/en/getting_started.md) for the basic usage of MMAction2.
There are also tutorials:

- [learn about configs](docs/en/tutorials/1_config.md)
- [finetuning models](docs/en/tutorials/2_finetune.md)
- [adding new dataset](docs/en/tutorials/3_new_dataset.md)
- [designing data pipeline](docs/en/tutorials/4_data_pipeline.md)
- [adding new modules](docs/en/tutorials/5_new_modules.md)
- [exporting model to onnx](docs/en/tutorials/6_export_model.md)
- [customizing runtime settings](docs/en/tutorials/7_customize_runtime.md)

A Colab tutorial is also provided. You may preview the notebook [here](demo/mmaction2_tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmaction2/blob/master/demo/mmaction2_tutorial.ipynb) on Colab.

## Supported Methods

<table style="margin-left:auto;margin-right:auto;font-size:1.3vw;padding:3px 5px;text-align:center;vertical-align:center;">
  <tr>
    <td colspan="5" style="font-weight:bold;">Action Recognition</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/c3d/README.md">C3D</a> (CVPR'2014)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsn/README.md">TSN</a> (ECCV'2016)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/i3d/README.md">I3D</a> (CVPR'2017)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/i3d/README.md">I3D Non-Local</a> (CVPR'2018)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/r2plus1d/README.md">R(2+1)D</a> (CVPR'2018)</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/trn/README.md">TRN</a> (ECCV'2018)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsm/README.md">TSM</a> (ICCV'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsm/README.md">TSM Non-Local</a> (ICCV'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/slowonly/README.md">SlowOnly</a> (ICCV'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/slowfast/README.md">SlowFast</a> (ICCV'2019)</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/csn/README.md">CSN</a> (ICCV'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tin/README.md">TIN</a> (AAAI'2020)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tpn/README.md">TPN</a> (CVPR'2020)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/x3d/README.md">X3D</a> (CVPR'2020)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/omnisource/README.md">OmniSource</a> (ECCV'2020)</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition_audio/resnet/README.md">MultiModality: Audio</a> (ArXiv'2020)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tanet/README.md">TANet</a> (ArXiv'2020)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/timesformer/README.md">TimeSformer</a> (ICML'2021)</td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td colspan="5" style="font-weight:bold;">Action Localization</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/ssn/README.md">SSN</a> (ICCV'2017)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/bsn/README.md">BSN</a> (ECCV'2018)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/bmn/README.md">BMN</a> (ICCV'2019)</td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td colspan="5" style="font-weight:bold;">Spatio-Temporal Action Detection</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/acrn/README.md">ACRN</a> (ECCV'2018)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/ava/README.md">SlowOnly+Fast R-CNN</a> (ICCV'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/ava/README.md">SlowFast+Fast R-CNN</a> (ICCV'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/lfb/README.md">LFB</a> (CVPR'2019)</td>
    <td></td>
  </tr>
  <tr>
    <td colspan="5" style="font-weight:bold;">Skeleton-based Action Recognition</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/stgcn/README.md">ST-GCN</a> (AAAI'2018)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/2s-agcn/README.md">2s-AGCN</a> (CVPR'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/posec3d/README.md">PoseC3D</a> (ArXiv'2021)</td>
    <td></td>
    <td></td>
  </tr>
</table>

Results and models are available in the *README.md* of each method's config directory.
A summary can be found on the [**model zoo**](https://mmaction2.readthedocs.io/en/latest/recognition_models.html) page.

We will keep up with the latest progress of the community and support more popular algorithms and frameworks.
If you have any feature requests, please feel free to leave a comment in [Issues](https://github.com/open-mmlab/mmaction2/issues/19).

## Supported Datasets

<table style="margin-left:auto;margin-right:auto;font-size:1.3vw;padding:3px 5px;text-align:center;vertical-align:center;">
  <tr>
    <td colspan="4" style="font-weight:bold;">Action Recognition</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hmdb51/README.md">HMDB51</a> (<a href="https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/">Homepage</a>) (ICCV'2011)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ucf101/README.md">UCF101</a> (<a href="https://www.crcv.ucf.edu/research/data-sets/ucf101/">Homepage</a>) (CRCV-IR-12-01)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/README.md">ActivityNet</a> (<a href="http://activity-net.org/">Homepage</a>) (CVPR'2015)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/README.md">Kinetics-[400/600/700]</a> (<a href="https://deepmind.com/research/open-source/kinetics/">Homepage</a>) (CVPR'2017)</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/sthv1/README.md">SthV1</a> (ICCV'2017)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/sthv2/README.md">SthV2</a> (<a href="https://developer.qualcomm.com/software/ai-datasets/something-something">Homepage</a>) (ICCV'2017)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/diving48/README.md">Diving48</a> (<a href="http://www.svcl.ucsd.edu/projects/resound/dataset.html">Homepage</a>) (ECCV'2018)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/jester/README.md">Jester</a> (<a href="https://developer.qualcomm.com/software/ai-datasets/jester">Homepage</a>) (ICCV'2019)</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/mit/README.md">Moments in Time</a> (<a href="http://moments.csail.mit.edu/">Homepage</a>) (TPAMI'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/mmit/README.md">Multi-Moments in Time</a> (<a href="http://moments.csail.mit.edu/challenge_iccv_2019.html">Homepage</a>) (ArXiv'2019)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/README.md">HVU</a> (<a href="https://github.com/holistic-video-understanding/HVU-Dataset">Homepage</a>) (ECCV'2020)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/omnisource/README.md">OmniSource</a> (<a href="https://kennymckormick.github.io/omnisource/">Homepage</a>) (ECCV'2020)</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/gym/README.md">FineGYM</a> (<a href="https://sdolivia.github.io/FineGym/">Homepage</a>) (CVPR'2020)</td>
    <td></td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td colspan="4" style="font-weight:bold;">Action Localization</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/thumos14/README.md">THUMOS14</a> (<a href="https://www.crcv.ucf.edu/THUMOS14/download.html">Homepage</a>) (THUMOS Challenge 2014)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/README.md">ActivityNet</a> (<a href="http://activity-net.org/">Homepage</a>) (CVPR'2015)</td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td colspan="4" style="font-weight:bold;">Spatio-Temporal Action Detection</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ucf101_24/README.md">UCF101-24*</a> (<a href="http://www.thumos.info/download.html">Homepage</a>) (CRCV-IR-12-01)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/jhmdb/README.md">JHMDB*</a> (<a href="http://jhmdb.is.tue.mpg.de/">Homepage</a>) (ICCV'2015)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava/README.md">AVA</a> (<a href="https://research.google.com/ava/index.html">Homepage</a>) (CVPR'2018)</td>
    <td></td>
  </tr>
  <tr>
    <td colspan="4" style="font-weight:bold;">Skeleton-based Action Recognition</td>
  </tr>
  <tr>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-FineGYM</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-NTURGB+D</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-UCF101</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
    <td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-HMDB51</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
  </tr>
</table>

Datasets marked with * are not fully supported yet, but related dataset preparation steps are provided. A summary can be found on the [**Supported Datasets**](https://mmaction2.readthedocs.io/en/latest/supported_datasets.html) page.

## Benchmark

To demonstrate the efficacy and efficiency of our framework, we compare MMAction2 with some other popular frameworks and official releases in terms of speed. Details can be found in [benchmark](docs/en/benchmark.md).

## Data Preparation

Please refer to [data_preparation.md](docs/en/data_preparation.md) for a general knowledge of data preparation.
The supported datasets are listed in [supported_datasets.md](docs/en/supported_datasets.md)

## FAQ

Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.

## Projects built on MMAction2

Currently, there are many research works and projects built on MMAction2 by users from community, such as:

- Video Swin Transformer. [\[paper\]](https://arxiv.org/abs/2106.13230)[\[github\]](https://github.com/SwinTransformer/Video-Swin-Transformer)
- Evidential Deep Learning for Open Set Action Recognition, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2107.10161)[\[github\]](https://github.com/Cogito2012/DEAR)
- Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2103.17263)[\[github\]](https://github.com/xvjiarui/VFS)

etc., check [projects.md](docs/en/projects.md) to see all related projects.

## Contributing

We appreciate all contributions to improve MMAction2. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.

## Acknowledgement

MMAction2 is an open-source project that is contributed by researchers and engineers from various colleges and companies.
We appreciate all the contributors who implement their methods or add new features and users who give valuable feedback.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their new models.

## Citation

If you find this project useful in your research, please consider cite:

```BibTeX
@misc{2020mmaction2,
    title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
    author={MMAction2 Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
    year={2020}
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Projects in OpenMMLab

- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.