adapter_v2.py 12.5 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""Implementation of the paper:

LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
https://arxiv.org/abs/2304.15010

Port for Lit-GPT
"""
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type

import torch
import torch.nn as nn
from typing_extensions import Self

import lit_gpt
from lit_gpt.adapter import GPT as BaseModel
from lit_gpt.adapter import Block as BaseBlock
from lit_gpt.adapter import Config as BaseConfig
from lit_gpt.adapter import KVCache, RoPECache
from lit_gpt.model import CausalSelfAttention as BaseCausalSelfAttention
from lit_gpt.model import apply_rope
from lit_gpt.utils import map_old_state_dict_weights


@dataclass
class Config(BaseConfig):
    @property
    def mlp_class(self) -> Type:
        return getattr(lit_gpt.adapter_v2, self._mlp_class)


def adapter_filter(key: str, value: Any) -> bool:
    adapter_substrings = (
        # regular adapter v1 parameters
        "adapter_wte",
        "gating_factor",
        # adapter v2: new bias and scale used in Linear
        "adapter_scale",
        "adapter_bias",
        # adapter v2: Norm parameters are now trainable
        "norm_1",
        "norm_2",
        "ln_f",
    )
    return any(s in key for s in adapter_substrings)


class AdapterV2Linear(torch.nn.Module):
    def __init__(self, in_features: int, out_features: int, **kwargs) -> None:
        super().__init__()
        self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
        self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False)
        self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False)
        self.reset_parameters()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.adapter_scale * (self.linear(x) + self.adapter_bias)

    def reset_parameters(self) -> None:
        nn.init.zeros_(self.adapter_bias)
        nn.init.ones_(self.adapter_scale)


class GPT(BaseModel):
    def __init__(self, config: Config) -> None:
        # Skip the parent class __init__ altogether and replace it to avoid useless allocations
        nn.Module.__init__(self)
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=False)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)),
                ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
            )
        )

        self.rope_cache: Optional[RoPECache] = None
        self.mask_cache: Optional[torch.Tensor] = None
        self.kv_caches: List[KVCache] = []
        self.adapter_kv_caches: List[KVCache] = []

    @classmethod
    def from_name(cls, name: str, **kwargs: Any) -> Self:
        return cls(Config.from_name(name, **kwargs))

    def _init_weights(self, module: nn.Module) -> None:
        """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
        super()._init_weights(module)
        if isinstance(module, CausalSelfAttention):
            module.reset_parameters()
        if isinstance(module, AdapterV2Linear):
            module.reset_parameters()

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {"lm_head.weight": "lm_head.linear.weight"}
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


class Block(BaseBlock):
    """The implementation is identical to `lit_gpt.model.Block` with the exception that
    we replace the attention layer where adaption is implemented."""

    def __init__(self, config: Config, block_idx: int) -> None:
        # Skip the parent class __init__ altogether and replace it to avoid useless allocations
        nn.Module.__init__(self)
        self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config, block_idx)
        if not config.shared_attention_norm:
            self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.mlp = config.mlp_class(config)

        self.config = config


class CausalSelfAttention(BaseCausalSelfAttention):
    def __init__(self, config: Config, block_idx: int) -> None:
        """Causal self-attention with calculating qkv matrices with a single matrix* and Low Ranking Adaptation for
        parameter-efficient fine-tuning.

        *Instead of creating multiple heads and concatenating the result (in addition to creating separate matrices for
        query, key and value for each head) we can do this in a single pass with a single weight matrix.
        """
        # Skip the parent class __init__ altogether and replace it to avoid useless allocations
        nn.Module.__init__(self)
        shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
        # key, query, value projections for all heads, but in a batch
        self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias)
        # output projection
        self.proj = AdapterV2Linear(config.n_embd, config.n_embd, bias=config.bias)
        if block_idx >= config.adapter_start_layer:
            # adapter embedding layer
            self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
            # gate for adaption
            self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
            self.reset_parameters()
        self.block_idx = block_idx

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        max_seq_length: int,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
        adapter_kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache], Optional[KVCache]]:
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        qkv = self.attn(x)

        # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
        q_per_kv = self.config.n_head // self.config.n_query_groups
        total_qkv = q_per_kv + 2  # each group has 1+ queries, 1 key, and 1 value
        qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
        qkv = qkv.permute(0, 2, 3, 1, 4)  # (B, n_query_groups, total_qkv, T, hs)

        # split batched computation into three
        q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)

        # repeat k and v if necessary
        if self.config.n_query_groups != 1:  # doing this would require a full kv cache with MQA (inefficient!)
            # for MHA this is a no-op
            k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
            v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)

        q = q.reshape(B, -1, T, self.config.head_size)  # (B, nh_q, T, hs)
        k = k.reshape(B, -1, T, self.config.head_size)  # (B, nh_k, T, hs)
        v = v.reshape(B, -1, T, self.config.head_size)  # (B, nh_v, T, hs)

        n_elem = int(self.config.rotary_percentage * self.config.head_size)

        cos, sin = rope
        q_roped = apply_rope(q[..., :n_elem], cos, sin)
        k_roped = apply_rope(k[..., :n_elem], cos, sin)
        q = torch.cat((q_roped, q[..., n_elem:]), dim=-1)
        k = torch.cat((k_roped, k[..., n_elem:]), dim=-1)

        if kv_cache is not None:
            cache_k, cache_v = kv_cache
            cache_k, cache_v = cache_k.to(dtype=k.dtype), cache_v.to(dtype=v.dtype)
            # check if reached token limit
            if input_pos[-1] >= max_seq_length:
                input_pos = torch.tensor(max_seq_length - 1, device=input_pos.device)
                # shift 1 position to the left
                cache_k = torch.roll(cache_k, -1, dims=2)
                cache_v = torch.roll(cache_v, -1, dims=2)
            k = cache_k.index_copy_(2, input_pos, k)
            v = cache_v.index_copy_(2, input_pos, v)
            kv_cache = k, v

        y = self.scaled_dot_product_attention(q, k, v, mask=mask)

        if self.block_idx >= self.config.adapter_start_layer:
            aT = self.config.adapter_prompt_length
            if adapter_kv_cache is not None:
                ak, av = adapter_kv_cache
            else:
                prefix = self.adapter_wte.weight.reshape(1, aT, C)
                aqkv = self.attn(prefix)
                aqkv = aqkv.view(1, aT, self.config.n_query_groups, q_per_kv + 2, self.config.head_size)
                aqkv = aqkv.permute(0, 2, 3, 1, 4)
                _, ak, av = aqkv.split((q_per_kv, 1, 1), dim=2)
                if self.config.n_query_groups != 1:
                    # for MHA this is a no-op
                    ak = ak.repeat_interleave(q_per_kv, dim=2)
                    av = av.repeat_interleave(q_per_kv, dim=2)
                ak = ak.view(1, -1, aT, self.config.head_size)  # (1, nh_ak, aT, hs)
                av = av.view(1, -1, aT, self.config.head_size)  # (1, nh_av, aT, hs)
                adapter_kv_cache = (ak, av)

            amask = torch.ones(T, aT, dtype=torch.bool, device=x.device)
            ay = self.scaled_dot_product_attention(q, ak, av, amask)
            y = y + self.gating_factor * ay

        y = y.reshape(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.proj(y)

        return y, kv_cache, adapter_kv_cache

    def reset_parameters(self) -> None:
        torch.nn.init.zeros_(self.gating_factor)

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {
            "attn.weight": "attn.linear.weight",
            "attn.bias": "attn.linear.bias",
            "proj.weight": "proj.linear.weight",
            "proj.bias": "proj.linear.bias",
        }
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        # For compatibility with older checkpoints
        if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
            state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


class GptNeoxMLP(lit_gpt.model.GptNeoxMLP):
    def __init__(self, config: Config) -> None:
        nn.Module.__init__(self)
        self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {
            "fc.weight": "fc.linear.weight",
            "fc.bias": "fc.linear.bias",
            "proj.weight": "proj.linear.weight",
            "proj.bias": "proj.linear.bias",
        }
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


class LLaMAMLP(lit_gpt.model.LLaMAMLP):
    def __init__(self, config: Config) -> None:
        nn.Module.__init__(self)
        self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {
            "fc_1.weight": "fc_1.linear.weight",
            "fc_1.bias": "fc_1.linear.bias",
            "fc_2.weight": "fc_2.linear.weight",
            "fc_2.bias": "fc_2.linear.bias",
            "proj.weight": "proj.linear.weight",
            "proj.bias": "proj.linear.bias",
        }
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


def mark_only_adapter_v2_as_trainable(model: GPT) -> None:
    """Sets requires_grad=False for all non-adapter weights"""
    for name, param in model.named_parameters():
        param.requires_grad = adapter_filter(name, param)