adapter.py 11.8 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""Implementation of the paper:

LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
https://arxiv.org/abs/2303.16199

Port for Lit-GPT
"""
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from typing_extensions import Self

from lit_gpt.config import Config as BaseConfig
from lit_gpt.model import GPT as BaseModel
from lit_gpt.model import CausalSelfAttention as BaseCausalSelfAttention
from lit_gpt.model import KVCache, RoPECache, apply_rope


@dataclass
class Config(BaseConfig):
    adapter_prompt_length: int = 10
    adapter_start_layer: int = 2


class GPT(BaseModel):
    """The implementation is identical to `lit_gpt.model.GPT` with the exception that
    the `Block` saves the layer index and passes it down to the attention layer."""

    def __init__(self, config: Config) -> None:
        nn.Module.__init__(self)
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)),
                ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
            )
        )

        self.rope_cache: Optional[RoPECache] = None
        self.mask_cache: Optional[torch.Tensor] = None
        self.kv_caches: List[KVCache] = []
        self.adapter_kv_caches: List[KVCache] = []

    def reset_cache(self) -> None:
        super().reset_cache()
        self.adapter_kv_caches.clear()

    def forward(
        self,
        idx: torch.Tensor,
        max_seq_length: Optional[int] = None,
        input_pos: Optional[torch.Tensor] = None,
        lm_head_chunk_size: int = 0,
    ) -> Union[torch.Tensor, List[torch.Tensor]]:
        B, T = idx.size()
        use_kv_cache = input_pos is not None

        block_size = self.config.block_size
        if max_seq_length is None:
            max_seq_length = block_size
        if use_kv_cache:  # not relevant otherwise
            assert (
                max_seq_length >= T
            ), f"Cannot forward sequence of length {T}, max seq length is only {max_seq_length}"
        assert max_seq_length <= block_size, f"Cannot attend to {max_seq_length}, block size is only {block_size}"
        assert block_size >= T, f"Cannot forward sequence of length {T}, block size is only {block_size}"

        if self.rope_cache is None:
            self.rope_cache = self.build_rope_cache(idx)
        # passing `attn_mask` to SDPA downgrades it to use the inefficient implementation. since we only need the mask
        # for the kv-cache support (only during inference), we only create it in that situation
        # this will be resolved by https://github.com/pytorch/pytorch/issues/96099
        if use_kv_cache and self.mask_cache is None:
            self.mask_cache = self.build_mask_cache(idx)

        cos, sin = self.rope_cache
        if use_kv_cache:
            cos = cos.index_select(0, input_pos)
            sin = sin.index_select(0, input_pos)
            mask = self.mask_cache.index_select(2, input_pos)
            mask = mask[:, :, :, :max_seq_length]
        else:
            cos = cos[:T]
            sin = sin[:T]
            mask = None

        # forward the model itself
        x = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)

        if not use_kv_cache:
            for block in self.transformer.h:
                x, *_ = block(x, (cos, sin), max_seq_length)
        else:
            self.kv_caches = self.kv_caches or self.build_kv_caches(x, max_seq_length, cos.size(-1))
            self.adapter_kv_caches = self.adapter_kv_caches or [None for _ in range(self.config.n_layer)]
            for i, block in enumerate(self.transformer.h):
                x, self.kv_caches[i], self.adapter_kv_caches[i] = block(
                    x, (cos, sin), max_seq_length, mask, input_pos, self.kv_caches[i], self.adapter_kv_caches[i]
                )

        x = self.transformer.ln_f(x)

        if lm_head_chunk_size > 0:
            # chunk the lm head logits to reduce the peak memory used by autograd
            return [self.lm_head(x_i) for x_i in x.split(lm_head_chunk_size, dim=1)]
        return self.lm_head(x)  # (b, t, vocab_size)

    @classmethod
    def from_name(cls, name: str, **kwargs: Any) -> Self:
        return cls(Config.from_name(name, **kwargs))

    def _init_weights(self, module: nn.Module) -> None:
        """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
        super()._init_weights(module)
        if isinstance(module, CausalSelfAttention):
            module.reset_parameters()


class Block(nn.Module):
    """The implementation is identical to `lit_gpt.model.Block` with the exception that
    we replace the attention layer where adaption is implemented."""

    def __init__(self, config: Config, block_idx: int) -> None:
        super().__init__()
        self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config, block_idx)
        if not config.shared_attention_norm:
            self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.mlp = config.mlp_class(config)

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        max_seq_length: int,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
        adapter_kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache], Optional[KVCache]]:
        n_1 = self.norm_1(x)
        h, new_kv_cache, new_adapter_kv_cache = self.attn(
            n_1, rope, max_seq_length, mask, input_pos, kv_cache, adapter_kv_cache
        )
        if self.config.parallel_residual:
            n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x)
            x = x + h + self.mlp(n_2)
        else:
            if self.config.shared_attention_norm:
                raise NotImplementedError(
                    "No checkpoint amongst the ones we support uses this configuration"
                    " (non-parallel residual and shared attention norm)."
                )
            x = x + h
            x = x + self.mlp(self.norm_2(x))
        return x, new_kv_cache, new_adapter_kv_cache


class CausalSelfAttention(BaseCausalSelfAttention):
    """A modification of `lit_gpt.model.CausalSelfAttention` that adds the attention
    over the adaption prompt."""

    def __init__(self, config: Config, block_idx: int) -> None:
        super().__init__(config)
        if block_idx >= config.adapter_start_layer:
            # adapter embedding layer
            self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
            # gate for adaption
            self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
            self.reset_parameters()
        self.block_idx = block_idx

    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        max_seq_length: int,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
        adapter_kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache], Optional[KVCache]]:
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        qkv = self.attn(x)

        # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
        q_per_kv = self.config.n_head // self.config.n_query_groups
        total_qkv = q_per_kv + 2  # each group has 1+ queries, 1 key, and 1 value
        qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
        qkv = qkv.permute(0, 2, 3, 1, 4)  # (B, n_query_groups, total_qkv, T, hs)

        # split batched computation into three
        q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)

        # repeat k and v if necessary
        if self.config.n_query_groups != 1:  # doing this would require a full kv cache with MQA (inefficient!)
            # for MHA this is a no-op
            k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
            v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)

        q = q.reshape(B, -1, T, self.config.head_size)  # (B, nh_q, T, hs)
        k = k.reshape(B, -1, T, self.config.head_size)  # (B, nh_k, T, hs)
        v = v.reshape(B, -1, T, self.config.head_size)  # (B, nh_v, T, hs)

        n_elem = int(self.config.rotary_percentage * self.config.head_size)

        cos, sin = rope
        q_roped = apply_rope(q[..., :n_elem], cos, sin)
        k_roped = apply_rope(k[..., :n_elem], cos, sin)
        q = torch.cat((q_roped, q[..., n_elem:]), dim=-1)
        k = torch.cat((k_roped, k[..., n_elem:]), dim=-1)

        if kv_cache is not None:
            cache_k, cache_v = kv_cache
            cache_k, cache_v = cache_k.to(dtype=k.dtype), cache_v.to(dtype=v.dtype)
            # check if reached token limit
            if input_pos[-1] >= max_seq_length:
                input_pos = torch.tensor(max_seq_length - 1, device=input_pos.device)
                # shift 1 position to the left
                cache_k = torch.roll(cache_k, -1, dims=2)
                cache_v = torch.roll(cache_v, -1, dims=2)
            k = cache_k.index_copy_(2, input_pos, k)
            v = cache_v.index_copy_(2, input_pos, v)
            kv_cache = k, v

        y = self.scaled_dot_product_attention(q, k, v, mask=mask)

        if self.block_idx >= self.config.adapter_start_layer:
            aT = self.config.adapter_prompt_length
            if adapter_kv_cache is not None:
                ak, av = adapter_kv_cache
            else:
                prefix = self.adapter_wte.weight.reshape(1, aT, C)
                aqkv = self.attn(prefix)
                aqkv = aqkv.view(1, aT, self.config.n_query_groups, q_per_kv + 2, self.config.head_size)
                aqkv = aqkv.permute(0, 2, 3, 1, 4)
                _, ak, av = aqkv.split((q_per_kv, 1, 1), dim=2)
                if self.config.n_query_groups != 1:
                    # for MHA this is a no-op
                    ak = ak.repeat_interleave(q_per_kv, dim=2)
                    av = av.repeat_interleave(q_per_kv, dim=2)
                ak = ak.view(1, -1, aT, self.config.head_size)  # (1, nh_ak, aT, hs)
                av = av.view(1, -1, aT, self.config.head_size)  # (1, nh_av, aT, hs)
                adapter_kv_cache = (ak, av)

            amask = torch.ones(T, aT, dtype=torch.bool, device=x.device)
            ay = self.scaled_dot_product_attention(q, ak, av, amask)
            y = y + self.gating_factor * ay

        y = y.reshape(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.proj(y)

        return y, kv_cache, adapter_kv_cache

    def reset_parameters(self) -> None:
        torch.nn.init.zeros_(self.gating_factor)

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with older checkpoints."""
        if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
            state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


def mark_only_adapter_as_trainable(model: GPT) -> None:
    """Sets `requires_grad=False` for all non-adapter weights."""
    for name, param in model.named_parameters():
        param.requires_grad = adapter_filter(name, param)


def adapter_filter(key: str, value: Any) -> bool:
    return "adapter_wte" in key or "gating_factor" in key