utils.py 9.48 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Forked from https://github.com/Nixtla/nixtla/blob/main/experiments/amazon-chronos/src/utils.py."""

from functools import partial
from itertools import repeat
import multiprocessing
import os
from pathlib import Path
from typing import List

from gluonts.dataset import Dataset
from gluonts.dataset.repository.datasets import (
    dataset_names as gluonts_datasets,
    get_dataset,
)
from gluonts.time_feature.seasonality import get_seasonality
import numpy as np
import pandas as pd
from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mae, mase, smape


def parallel_transform(inp):
  ts, last_n = inp[0], inp[1]
  return ExperimentHandler._transform_gluonts_instance_to_df(ts, last_n=last_n)


def quantile_loss(
    df: pd.DataFrame,
    models: list,
    q: float = 0.5,
    id_col: str = "unique_id",
    target_col: str = "y",
) -> pd.DataFrame:
  delta_y = df[models].sub(df[target_col], axis=0)
  res = (
      np.maximum(q * delta_y, (q - 1) * delta_y)
      .groupby(df[id_col], observed=True)
      .mean()
  )
  res.index.name = id_col
  res = res.reset_index()
  return res


class ExperimentHandler:

  def __init__(
      self,
      dataset: str,
      quantiles: List[float] = list(np.arange(1, 10) / 10.0),
      results_dir: str = "./results",
      models_dir: str = "./models",
  ):
    if dataset not in gluonts_datasets:
      raise Exception(
          f"dataset {dataset} not found in gluonts "
          f"available datasets: {', '.join(gluonts_datasets)}"
      )
    self.dataset = dataset
    self.quantiles = quantiles
    self.level = self._transform_quantiles_to_levels(quantiles)
    self.results_dir = results_dir
    self.models_dir = models_dir
    # defining datasets
    self._maybe_download_m3_or_m5_file(self.dataset)
    gluonts_dataset = get_dataset(self.dataset)
    self.horizon = gluonts_dataset.metadata.prediction_length
    if self.horizon is None:
      raise Exception(
          f"horizon not found for dataset {self.dataset} "
          "experiment cannot be run"
      )
    self.freq = gluonts_dataset.metadata.freq
    # get_seasonality() returns 1 for freq='D', override this to 7. This significantly improves the accuracy of
    # statistical models on datasets like m5/nn5_daily. The models like AutoARIMA/AutoETS can still set
    # seasonality=1 internally on datasets like weather by choosing non-seasonal models during model selection.
    if self.freq == "D":
      self.seasonality = 7
    else:
      self.seasonality = get_seasonality(self.freq)
    self.gluonts_train_dataset = gluonts_dataset.train
    self.gluonts_test_dataset = gluonts_dataset.test
    self._create_dir_if_not_exists(self.results_dir)
    try:
      multiprocessing.set_start_method("spawn")
    except RuntimeError:
      print("Multiprocessing context has already been set.")

  @staticmethod
  def _maybe_download_m3_or_m5_file(dataset: str):
    if dataset[:2] == "m3":
      m3_file = Path.home() / ".gluonts" / "datasets" / "M3C.xls"
      if not m3_file.exists():
        from datasetsforecast.m3 import M3
        from datasetsforecast.utils import download_file

        download_file(m3_file.parent, M3.source_url)
    elif dataset == "m5":
      m5_raw_dir = Path.home() / ".gluonts" / "m5"
      if not m5_raw_dir.exists():
        import zipfile
        from datasetsforecast.m5 import M5
        from datasetsforecast.utils import download_file

        download_file(m5_raw_dir, M5.source_url)
        with zipfile.ZipFile(m5_raw_dir / "m5.zip", "r") as zip_ref:
          zip_ref.extractall(m5_raw_dir)

  @staticmethod
  def _transform_quantiles_to_levels(quantiles: List[float]) -> List[int]:
    level = [
        int(100 - 200 * q) for q in quantiles if q < 0.5
    ]  # in this case mean=mediain
    level = sorted(list(set(level)))
    return level

  @staticmethod
  def _create_dir_if_not_exists(directory: str):
    Path(directory).mkdir(parents=True, exist_ok=True)

  @staticmethod
  def _transform_gluonts_instance_to_df(
      ts: dict,
      last_n: int | None = None,
  ) -> pd.DataFrame:
    start_period = ts["start"]
    start_ds, freq = start_period.to_timestamp(), start_period.freq
    target = ts["target"]
    ds = pd.date_range(start=start_ds, freq=freq, periods=len(target))
    if last_n is not None:
      target = target[-last_n:]
      ds = ds[-last_n:]
    ts_df = pd.DataFrame({"unique_id": ts["item_id"], "ds": ds, "y": target})
    return ts_df

  @staticmethod
  def _transform_gluonts_dataset_to_df(
      gluonts_dataset: Dataset,
      last_n: int | None = None,
  ) -> pd.DataFrame:
    with multiprocessing.Pool(os.cpu_count()) as pool:  # Create a process pool
      results = pool.map(
          parallel_transform, zip(gluonts_dataset, repeat(last_n))
      )
    df = pd.concat(results)
    df = df.reset_index(drop=True)
    return df

  @property
  def train_df(self) -> pd.DataFrame:
    train_df = self._transform_gluonts_dataset_to_df(self.gluonts_train_dataset)
    return train_df

  @property
  def test_df(self) -> pd.DataFrame:
    test_df = self._transform_gluonts_dataset_to_df(
        self.gluonts_test_dataset,
        last_n=self.horizon,
    )
    # Make sure that only the first backtest window is used for evaluation on `traffic` / `exchange_rate` datasets
    return test_df.groupby("unique_id", sort=False).head(self.horizon)

  def save_dataframe(self, df: pd.DataFrame, file_name: str):
    df.to_csv(f"{self.results_dir}/{file_name}", index=False)

  def save_results(
      self, fcst_df: pd.DataFrame, total_time: float, model_name: str
  ):
    self.save_dataframe(
        fcst_df,
        f"{model_name}-{self.dataset}-fcst.csv",
    )
    time_df = pd.DataFrame({"time": [total_time], "model": model_name})
    self.save_dataframe(
        time_df,
        f"{model_name}-{self.dataset}-time.csv",
    )

  def fcst_from_level_to_quantiles(
      self,
      fcst_df: pd.DataFrame,
      model_name: str,
  ) -> pd.DataFrame:
    fcst_df = fcst_df.copy()
    cols = ["unique_id", "ds", model_name]
    for q in self.quantiles:
      if q == 0.5:
        col = f"{model_name}"
      else:
        lv = int(100 - 200 * q)
        hi_or_lo = "lo" if lv > 0 else "hi"
        lv = abs(lv)
        col = f"{model_name}-{hi_or_lo}-{lv}"
      q_col = f"{model_name}-q-{q}"
      fcst_df[q_col] = fcst_df[col].values
      cols.append(q_col)
    return fcst_df[cols]

  def evaluate_models(self, models: List[str]) -> pd.DataFrame:
    fcsts_df = []
    times_df = []
    for model in models:
      fcst_method_df = pd.read_csv(
          f"{self.results_dir}/{model}-{self.dataset}-fcst.csv"
      ).set_index(["unique_id", "ds"])
      fcsts_df.append(fcst_method_df)
      time_method_df = pd.read_csv(
          f"{self.results_dir}/{model}-{self.dataset}-time.csv"
      )
      times_df.append(time_method_df)
    fcsts_df = pd.concat(fcsts_df, axis=1).reset_index()
    fcsts_df["ds"] = pd.to_datetime(fcsts_df["ds"])
    times_df = pd.concat(times_df)
    return self.evaluate_from_predictions(
        models=models, fcsts_df=fcsts_df, times_df=times_df
    )

  def evaluate_from_predictions(
      self, models: List[str], fcsts_df: pd.DataFrame, times_df: pd.DataFrame
  ) -> pd.DataFrame:
    test_df = self.test_df
    train_df = self.train_df
    test_df = test_df.merge(fcsts_df, how="left")
    assert test_df.isna().sum().sum() == 0, "merge contains nas"
    # point evaluation
    point_fcsts_cols = ["unique_id", "ds", "y"] + models
    test_df["unique_id"] = test_df["unique_id"].astype(str)
    train_df["unique_id"] = train_df["unique_id"].astype(str)
    mase_seas = partial(mase, seasonality=self.seasonality)
    eval_df = evaluate(
        test_df[point_fcsts_cols],
        train_df=train_df,
        metrics=[smape, mase_seas, mae],
    )
    # probabilistic evaluation
    eval_prob_df = []
    for q in self.quantiles:
      prob_cols = [f"{model}-q-{q}" for model in models]
      eval_q_df = quantile_loss(test_df, models=prob_cols, q=q)
      eval_q_df[prob_cols] = eval_q_df[prob_cols] * self.horizon
      eval_q_df = eval_q_df.rename(columns=dict(zip(prob_cols, models)))
      eval_q_df["metric"] = f"quantile-loss-{q}"
      eval_prob_df.append(eval_q_df)
    eval_prob_df = pd.concat(eval_prob_df)
    eval_prob_df = eval_prob_df.groupby("metric").sum().reset_index()
    total_y = test_df["y"].sum()
    eval_prob_df[models] = eval_prob_df[models] / total_y
    eval_prob_df["metric"] = "scaled_crps"
    eval_df = pd.concat([eval_df, eval_prob_df]).reset_index(drop=True)
    eval_df = eval_df.groupby("metric").mean(numeric_only=True).reset_index()
    eval_df = eval_df.melt(
        id_vars="metric", value_name="value", var_name="model"
    )
    times_df.insert(0, "metric", "time")
    times_df = times_df.rename(columns={"time": "value"})
    eval_df = pd.concat([eval_df, times_df])
    eval_df.insert(0, "dataset", self.dataset)
    eval_df = eval_df.sort_values(["dataset", "metric", "model"])
    eval_df = eval_df.reset_index(drop=True)
    return eval_df


if __name__ == "__main__":
  multiprocessing.set_start_method("spawn")