timegpt_pipeline.py 8.53 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Tuple
import os
import pandas as pd
from gluonts.time_feature.seasonality import get_seasonality as _get_seasonality
from tqdm import tqdm
from utilsforecast.processing import (
    backtest_splits,
    drop_index_if_pandas,
    join,
    maybe_compute_sort_indices,
    take_rows,
    vertical_concat,
)
from time import time
from dotenv import load_dotenv
from nixtla import NixtlaClient


def get_seasonality(freq: str) -> int:
    return _get_seasonality(freq, seasonalities={"D": 7})


def maybe_convert_col_to_datetime(df: pd.DataFrame, col_name: str) -> pd.DataFrame:
    if not pd.api.types.is_datetime64_any_dtype(df[col_name]):
        df = df.copy()
        df[col_name] = pd.to_datetime(df[col_name])
    return df


def zero_pad_time_series(df, freq, min_length=36):
    """If time_series length is less than min_length, front pad it with zeros."""
    # 1. Calculate required padding for each unique_id
    value_counts = df["unique_id"].value_counts()
    to_pad = value_counts[value_counts < min_length].index

    # 2. Create a new DataFrame to hold padded data
    padded_data = []

    for unique_id in to_pad:
        # 2a. Filter data for the specific unique_id
        subset = df[df["unique_id"] == unique_id]
        if len(subset) > min_length:
            padded_data.append(subset)
        else:
            # 2b. Determine earliest date and calculate padding dates
            start_date = subset["ds"].min()
            padding_dates = pd.date_range(
                end=start_date,
                periods=min_length - len(subset) + 1,
                freq=freq,  # 'MS' for month start
            )[
                :-1
            ]  # Exclude the start_date itself

            # 2c. Create padding data
            padding_df = pd.DataFrame(
                {"ds": padding_dates, "unique_id": unique_id, "y": 0}  # Zero padding
            )

            # 2d. Combine original and padding data, and append to the list
            padded_data.append(pd.concat([padding_df, subset]).sort_values("ds"))

    # 3. Combine all padded data and original data (unchanged)
    result_df = pd.concat(padded_data + [df[~df["unique_id"].isin(to_pad)]])
    return result_df


class Forecaster:
    """Borrowed from
    https://github.com/Nixtla/nixtla/tree/main/experiments/foundation-time-series-arena/xiuhmolpilli/models.
    """

    def forecast(
        self,
        df: pd.DataFrame,
        h: int,
        freq: str,
    ) -> pd.DataFrame:
        raise NotImplementedError

    def cross_validation(
        self,
        df: pd.DataFrame,
        h: int,
        freq: str,
        n_windows: int = 1,
        step_size: int | None = None,
    ) -> pd.DataFrame:
        df = maybe_convert_col_to_datetime(df, "ds")
        # mlforecast cv code
        results = []
        sort_idxs = maybe_compute_sort_indices(df, "unique_id", "ds")
        if sort_idxs is not None:
            df = take_rows(df, sort_idxs)
        splits = backtest_splits(
            df,
            n_windows=n_windows,
            h=h,
            id_col="unique_id",
            time_col="ds",
            freq=pd.tseries.frequencies.to_offset(freq),
            step_size=h if step_size is None else step_size,
        )
        for _, (cutoffs, train, valid) in tqdm(enumerate(splits)):
            if len(valid.columns) > 3:
                raise NotImplementedError(
                    "Cross validation with exogenous variables is not yet supported."
                )
            y_pred = self.forecast(
                df=train,
                h=h,
                freq=freq,
            )
            y_pred = join(y_pred, cutoffs, on="unique_id", how="left")
            result = join(
                valid[["unique_id", "ds", "y"]],
                y_pred,
                on=["unique_id", "ds"],
            )
            if result.shape[0] < valid.shape[0]:
                raise ValueError(
                    "Cross validation result produced less results than expected. "
                    "Please verify that the frequency parameter (freq) matches your series' "
                    "and that there aren't any missing periods."
                )
            results.append(result)
        out = vertical_concat(results)
        out = drop_index_if_pandas(out)
        first_out_cols = ["unique_id", "ds", "cutoff", "y"]
        remaining_cols = [c for c in out.columns if c not in first_out_cols]
        fcst_cv_df = out[first_out_cols + remaining_cols]
        return fcst_cv_df


class TimeGPT(Forecaster):
    """Borrowed from
    https://github.com/Nixtla/nixtla/tree/main/experiments/foundation-time-series-arena/xiuhmolpilli/models.
    We modify the class to take care of edge cases.
    """

    def __init__(
        self,
        api_key: str | None = None,
        base_url: Optional[str] = None,
        max_retries: int = 1,
        model: str = "timegpt-1",
        alias: str = "TimeGPT",
    ):
        self.api_key = api_key
        self.base_url = base_url
        self.max_retries = max_retries
        self.model = model
        self.alias = alias

    def _get_client(self) -> NixtlaClient:
        if self.api_key is None:
            api_key = os.environ["NIXTLA_API_KEY"]
        else:
            api_key = self.api_key
        return NixtlaClient(
            api_key=api_key,
            base_url=self.base_url,
            max_retries=self.max_retries,
        )

    def forecast(
        self,
        df: pd.DataFrame,
        h: int,
        freq: str,
        level: List = [90.0],
        chunk_size: Optional[int] = None,
    ) -> pd.DataFrame:
        client = self._get_client()
        fcst_df = None
        if chunk_size is None:
            fcst_df = client.forecast(
                df=df,
                h=h,
                freq=freq,
                level=level,
                model=self.model,
            )
        else:
            all_unique_ids = df["unique_id"].unique()
            all_fcst_df = []
            for i in range(0, len(all_unique_ids), chunk_size):
                chunk_ids = all_unique_ids[i : i + chunk_size]
                chunk_df = df[df["unique_id"].isin(chunk_ids)]
                fct_chunk_df = client.forecast(
                    df=chunk_df,
                    h=h,
                    freq=freq,
                    level=level,
                )
                all_fcst_df.append(fct_chunk_df)
            fcst_df = pd.concat(all_fcst_df)
        fcst_df["ds"] = pd.to_datetime(fcst_df["ds"])
        replace_dict = {}
        for col in fcst_df.columns:
            if col.startswith("TimeGPT"):
                replace_dict[col] = col.replace("TimeGPT", self.alias)
        fcst_df = fcst_df.rename(columns=replace_dict)
        return fcst_df


def run_timegpt(
    train_df: pd.DataFrame,
    horizon: int,
    freq: str,
    seasonality: int,
    level: List[int],
    dataset: str,
    model: str = "timegpt-1",
) -> Tuple[pd.DataFrame, float, str]:
    os.environ["NIXTLA_ID_AS_COL"] = "true"
    model = TimeGPT("nixtla-tok-uV1RLF3oVWJ8R2Bq1eqqiCxWRceUKVr751OpiM9AGdhQkRZfjgL0ceG1TYVE34wCXjdAbq41ZES0mIZy", model="timegpt-1", alias=model)  # #TODO:添加密匙
    padded_train_df = zero_pad_time_series(train_df, freq)
    init_time = time()
    # For these datasets the API fails if we do not chunk.
    if dataset in ["m5", "m4_quarterly"]:
        chunk_size = 5000
    else:
        chunk_size = None
    fcsts_df = model.forecast(
        df=padded_train_df, h=horizon, level=level, freq=freq, chunk_size=chunk_size
    )
    total_time = time() - init_time
    # In case levels are not returned we replace the levels with the mean predictions.
    # Note that this does not affect the results table as we only compare on point
    # forecastign metrics.
    for lvl in level:
        if f"{model.alias}-lo-{lvl}" not in fcsts_df.columns:
            fcsts_df[f"{model.alias}-lo-{lvl}"] = fcsts_df[model.alias]
        if f"{model.alias}-hi-{lvl}" not in fcsts_df.columns:
            fcsts_df[f"{model.alias}-hi-{lvl}"] = fcsts_df[model.alias]
    return fcsts_df, total_time, model.alias