test_audit_data.py 9.46 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import pandas as pd

import pytest


def test_audit_data_all_pass(custom_client, df_ok, common_kwargs):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_ok, **common_kwargs
    )
    assert all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 0


def test_audit_data_with_duplicates(
    custom_client, df_with_duplicates_set2, common_kwargs
):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_duplicates_set2, **common_kwargs
    )
    assert not all_pass
    assert len(case_specific_dfs) == 0
    assert len(fail_dfs) == 2
    assert "D001" in fail_dfs
    # The two duplicate rows should be returned
    assert len(fail_dfs["D001"]) == 2
    assert "D002" in fail_dfs
    ## D002 can not be run with duplicates
    assert fail_dfs["D002"] is None


def test_clean_data_with_duplicates(
    custom_client, df_with_duplicates_set2, common_kwargs
):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_duplicates_set2, **common_kwargs
    )
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_with_duplicates_set2,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        agg_dict={"y": "sum"},
        **common_kwargs
    )
    assert all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 0
    assert len(cleaned_df) == 3


def test_clean_data_raises_valueerror(
    custom_client, df_with_duplicates_set2, common_kwargs
):
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_duplicates_set2, **common_kwargs
    )
    with pytest.raises(
        ValueError, match="agg_dict must be provided to resolve D001 failure."
    ):
        custom_client.clean_data(
            df=df_with_duplicates_set2,
            fail_dict=fail_dfs,
            case_specific_dict=case_specific_dfs,
            **common_kwargs
        )


def test_audit_data_with_missing_dates(
    custom_client, df_with_missing_dates, common_kwargs
):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_missing_dates, **common_kwargs
    )
    assert not all_pass
    assert len(case_specific_dfs) == 0
    assert len(fail_dfs) == 1
    assert "D002" in fail_dfs
    assert len(fail_dfs["D002"]) == 2  # Two missing dates should be returned


def test_clean_data_with_missing_dates(
    custom_client, df_with_missing_dates, common_kwargs
):
    # First audit to get fail_dfs and case_specific_dfs
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_missing_dates, **common_kwargs
    )
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_with_missing_dates,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        agg_dict={"y": "sum"},
        **common_kwargs
    )
    assert all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 0
    assert len(cleaned_df) == 6  # Two missing rows added.
    assert pd.to_datetime("2023-01-02") in pd.to_datetime(cleaned_df["ds"]).values


def test_audit_data_with_duplicates_and_missing_dates(
    custom_client, df_with_duplicates_and_missing_dates, common_kwargs
):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_duplicates_and_missing_dates, **common_kwargs
    )
    assert not all_pass
    assert len(case_specific_dfs) == 0
    assert len(fail_dfs) == 2
    assert "D001" in fail_dfs
    assert len(fail_dfs["D001"]) == 2  # The two duplicate rows should be returned
    assert "D002" in fail_dfs
    assert fail_dfs["D002"] is None  # D002 can not be run with duplicates


def test_clean_data_with_duplicates_and_missing_dates(
    custom_client, df_with_duplicates_and_missing_dates, common_kwargs
):
    # First audit to get fail_dfs and case_specific_dfs
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_duplicates_and_missing_dates, **common_kwargs
    )

    # Clean Data (pass 1 will clear the duplicates)
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_with_duplicates_and_missing_dates,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        agg_dict={"y": "sum"},
        **common_kwargs
    )
    assert not all_pass
    assert len(fail_dfs) == 1
    # Since duplicates have been removed, D002 has been run now.
    assert "D002" in fail_dfs
    assert len(fail_dfs["D002"]) == 1
    assert len(case_specific_dfs) == 0
    assert len(cleaned_df) == 4  # Two duplicates rows consolidated into one.

    # Clean Data (pass 2 will clear the missing dates)
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=cleaned_df,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        **common_kwargs
    )
    assert all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 0
    # Two duplicates rows consolidated into one plus one missing row added.
    assert len(cleaned_df) == 5


def test_audit_data_with_cat_columns(custom_client, df_with_cat_columns, common_kwargs):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_with_cat_columns, **common_kwargs
    )
    assert not all_pass
    assert len(case_specific_dfs) == 0
    assert len(fail_dfs) == 1
    assert "F001" in fail_dfs
    assert fail_dfs["F001"].shape[1] == 2  # Should return both categorical columns


def test_audit_data_with_negative_vals(custom_client, df_negative_vals, common_kwargs):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_negative_vals, **common_kwargs
    )
    assert not all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 1
    assert "V001" in case_specific_dfs
    assert case_specific_dfs["V001"].shape[0] == 3  # should return all negative values


def test_clean_data_with_negative_vals_without_cleaning_case_specific(
    custom_client, df_negative_vals, common_kwargs
):
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_negative_vals, **common_kwargs
    )
    _, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_negative_vals,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        # clean_case_specific=False, # Default
        **common_kwargs
    )
    assert not all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 1
    assert "V001" in case_specific_dfs
    assert case_specific_dfs["V001"].shape[0] == 3  # should return all negative values


def test_clean_data_with_negative_vals_cleaning_case_specific(
    custom_client, df_negative_vals, common_kwargs
):
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_negative_vals, **common_kwargs
    )
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_negative_vals,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        clean_case_specific=True,
        **common_kwargs
    )
    assert not all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 1
    assert "V002" in case_specific_dfs
    assert case_specific_dfs["V002"].shape[0] == 1  # should return leading zeros

    # test second pass
    # Clean Data, second pass (removes leading zeros)
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=cleaned_df,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        clean_case_specific=True,
        **common_kwargs
    )

    assert all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 0


def test_audit_data_leading_zeros(custom_client, common_kwargs, df_leading_zeros_set2):
    all_pass, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_leading_zeros_set2, **common_kwargs
    )
    assert not all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 1
    assert "V002" in case_specific_dfs
    assert (
        case_specific_dfs["V002"].shape[0] == 2
    )  # should return ids with leading zeros


def test_clean_data_leading_zeroes_without_cleaning_case_specific(
    custom_client, common_kwargs, df_leading_zeros_set2
):
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_leading_zeros_set2, **common_kwargs
    )
    _, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_leading_zeros_set2,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        # clean_case_specific=False,  # Default
        **common_kwargs
    )
    assert not all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 1
    assert "V002" in case_specific_dfs
    assert (
        case_specific_dfs["V002"].shape[0] == 2
    )  # should return ids with leading zeros


def test_clean_data_with_cleaning_case_specific(
    custom_client, common_kwargs, df_leading_zeros_set2
):
    _, fail_dfs, case_specific_dfs = custom_client.audit_data(
        df=df_leading_zeros_set2, **common_kwargs
    )
    cleaned_df, all_pass, fail_dfs, case_specific_dfs = custom_client.clean_data(
        df=df_leading_zeros_set2,
        fail_dict=fail_dfs,
        case_specific_dict=case_specific_dfs,
        clean_case_specific=True,
        **common_kwargs
    )
    assert all_pass
    assert len(fail_dfs) == 0
    assert len(case_specific_dfs) == 0
    assert len(cleaned_df) == 7  # all leading zeros removed, zero series unchanged