conftest.py 13.9 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import os
from copy import deepcopy
from types import SimpleNamespace

import numpy as np
import pandas as pd
import pytest
import utilsforecast.processing as ufp
from dotenv import load_dotenv
from utilsforecast.data import generate_series
from utilsforecast.feature_engineering import fourier, time_features

from nixtla.nixtla_client import NixtlaClient, _maybe_add_date_features
from nixtla_tests.helpers.states import model_ids_object

load_dotenv(override=True)

pytest_plugins = [
    "nixtla_tests.fixtures.dask_fixtures",
    "nixtla_tests.fixtures.spark_fixtures",
    "nixtla_tests.fixtures.ray_fixtures",
]


# note that scope="session" will result in failed test
@pytest.fixture(scope="module")
def nixtla_test_client():
    client = NixtlaClient()
    yield client

    try:
        client.delete_finetuned_model(model_ids_object.model_id1)
    except:
        print("model_id1 not found, skipping deletion.")

    try:
        client.delete_finetuned_model(model_ids_object.model_id2)
    except:
        print("model_id2 not found, skipping deletion.")


@pytest.fixture(scope="class")
def custom_client():
    client = NixtlaClient(
        base_url=os.environ["NIXTLA_BASE_URL_CUSTOM"],
        api_key=os.environ["NIXTLA_API_KEY_CUSTOM"],
    )
    yield client

    try:
        client.delete_finetuned_model(model_ids_object.model_id1)
    except:
        print("model_id1 not found, skipping deletion.")

    try:
        client.delete_finetuned_model(model_ids_object.model_id2)
    except:
        print("model_id2 not found, skipping deletion.")


@pytest.fixture
def series_with_gaps():
    series = generate_series(2, min_length=100, freq="5min")
    with_gaps = series.sample(frac=0.5, random_state=0)
    return series, with_gaps


@pytest.fixture
def df_no_duplicates():
    return pd.DataFrame(
        {
            "unique_id": [1, 2, 3, 4],
            "ds": ["2020-01-01"] * 4,
            "y": [1, 2, 3, 4],
        }
    )


@pytest.fixture
def df_with_duplicates():
    return pd.DataFrame(
        {
            "unique_id": [1, 1, 1],
            "ds": ["2020-01-01", "2020-01-01", "2020-01-02"],
            "y": [1, 2, 3],
        }
    )


@pytest.fixture
def df_complete():
    return pd.DataFrame(
        {
            "unique_id": [1, 1, 1, 2, 2, 2],
            "ds": [
                "2020-01-01",
                "2020-01-02",
                "2020-01-03",
                "2020-01-01",
                "2020-01-02",
                "2020-01-03",
            ],
            "y": [1, 2, 3, 4, 5, 6],
        }
    )


@pytest.fixture
def df_missing():
    return pd.DataFrame(
        {
            "unique_id": [1, 1, 2, 2],
            "ds": ["2020-01-01", "2020-01-03", "2020-01-01", "2020-01-03"],
            "y": [1, 3, 4, 6],
        }
    )


@pytest.fixture
def df_no_cat():
    return pd.DataFrame(
        {
            "unique_id": [1, 2, 3],
            "ds": pd.date_range("2023-01-01", periods=3),
            "y": [1.0, 2.0, 3.0],
        }
    )


@pytest.fixture
def df_with_cat():
    return pd.DataFrame(
        {
            "unique_id": ["A", "B", "C"],
            "ds": pd.date_range("2023-01-01", periods=3),
            "y": [1.0, 2.0, 3.0],
            "cat_col": ["X", "Y", "Z"],
        }
    )


@pytest.fixture
def df_with_cat_dtype():
    return pd.DataFrame(
        {
            "unique_id": [1, 2, 3],
            "ds": pd.date_range("2023-01-01", periods=3),
            "y": [1.0, 2.0, 3.0],
            "cat_col": pd.Categorical(["X", "Y", "Z"]),
        }
    )


@pytest.fixture
def df_leading_zeros():
    return pd.DataFrame(
        {
            "unique_id": ["A", "A", "A", "B", "B", "C", "C", "C", "C", "D", "D", "D"],
            "ds": pd.date_range("2025-01-01", periods=12),
            "y": [0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 0, 0],
        }
    )


@pytest.fixture
def df_negative_values():
    return pd.DataFrame(
        {
            "unique_id": ["A", "A", "A", "B", "B", "C", "C", "C"],
            "ds": pd.date_range("2025-01-01", periods=8),
            "y": [0, -1, 2, -1, -2, 0, 1, 2],
        }
    )


@pytest.fixture(scope="module")
def ts_data_set1():
    h = 5
    freq = "D"
    series = generate_series(n_series=10, freq=freq, equal_ends=True)
    train_end = series["ds"].max() - h * pd.offsets.Day()
    train_mask = series["ds"] <= train_end
    train = series[train_mask]
    valid = series[~train_mask]

    return SimpleNamespace(
        h=h,
        series=series,
        train=train,
        train_end=train_end,
        valid=valid,
        freq=freq,
    )


@pytest.fixture(scope="module")
def ts_anomaly_data(ts_data_set1):
    train_anomalies = ts_data_set1.train.copy()
    anomaly_date = ts_data_set1.train_end - 2 * pd.offsets.Day()
    train_anomalies.loc[train_anomalies["ds"] == anomaly_date, "y"] *= 2

    return SimpleNamespace(
        train_anomalies=train_anomalies,
        anomaly_date=anomaly_date,
    )


@pytest.fixture
def common_kwargs():
    return {"freq": "D", "id_col": "unique_id", "time_col": "ds"}


@pytest.fixture
def df_ok():
    return pd.DataFrame(
        {
            "unique_id": ["id1", "id1", "id1", "id2", "id2", "id2"],
            "ds": [
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
            ],
            "y": [1, 2, 3, 4, 5, 6],
        }
    )


@pytest.fixture
def df_with_duplicates_set2():
    return pd.DataFrame(
        {
            "unique_id": ["id1", "id1", "id1", "id2"],
            "ds": ["2023-01-01", "2023-01-01", "2023-01-02", "2023-01-02"],
            "y": [1, 2, 3, 4],
        }
    )


@pytest.fixture
def df_with_missing_dates():
    return pd.DataFrame(
        {
            "unique_id": ["id1", "id1", "id2", "id2"],
            "ds": ["2023-01-01", "2023-01-03", "2023-01-01", "2023-01-03"],
            "y": [1, 3, 4, 6],
        }
    )


@pytest.fixture
def df_with_duplicates_and_missing_dates():
    # Global end on 2023-01-03 which is missing for id1
    return pd.DataFrame(
        {
            "unique_id": ["id1", "id1", "id1", "id2", "id2"],
            "ds": [
                "2023-01-01",
                "2023-01-01",
                "2023-01-02",
                "2023-01-02",
                "2023-01-03",
            ],
            "y": [1, 2, 3, 4, 5],
        }
    )


@pytest.fixture
def df_with_cat_columns():
    return pd.DataFrame(
        {
            "unique_id": ["id1", "id1", "id1", "id2", "id2", "id2"],
            "ds": [
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
            ],
            "y": [1, 2, 3, 4, 5, 6],
            "cat_col1": ["A", "B", "C", "D", "E", "F"],
            "cat_col2": pd.Categorical(["X", "Y", "Z", "X", "Y", "Z"]),
        }
    )


@pytest.fixture
def df_negative_vals():
    return pd.DataFrame(
        {
            "unique_id": ["id1", "id1", "id1", "id2", "id2", "id2"],
            "ds": [
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
            ],
            "y": [-1, 0, 1, 2, -3, -4],
        }
    )


@pytest.fixture
def df_leading_zeros_set2():
    return pd.DataFrame(
        {
            "unique_id": [
                "id1",
                "id1",
                "id1",
                "id2",
                "id2",
                "id2",
                "id3",
                "id3",
                "id3",
            ],
            "ds": [
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
                "2023-01-01",
                "2023-01-02",
                "2023-01-03",
            ],
            "y": [0, 1, 2, 0, 1, 2, 0, 0, 0],
        }
    )


@pytest.fixture
def cv_series_with_features():
    freq = "D"
    h = 5
    series = generate_series(2, freq=freq)
    series_with_features, _ = fourier(series, freq=freq, season_length=7, k=2)
    splits = ufp.backtest_splits(
        df=series_with_features,
        n_windows=1,
        h=h,
        id_col="unique_id",
        time_col="ds",
        freq=freq,
    )
    _, train, valid = next(splits)
    x_cols = train.columns.drop(["unique_id", "ds", "y"]).tolist()
    return series_with_features, train, valid, x_cols, h, freq


@pytest.fixture
def custom_business_hours():
    return pd.tseries.offsets.CustomBusinessHour(
        start="09:00",
        end="16:00",
        holidays=[
            "2022-12-25",  # Christmas
            "2022-01-01",  # New Year's Day
        ],
    )


@pytest.fixture
def business_hours_series(custom_business_hours):
    series = pd.DataFrame(
        {
            "unique_id": 1,
            "ds": pd.date_range(
                start="2000-01-03 09", freq=custom_business_hours, periods=200
            ),
            "y": np.arange(200) % 7,
        }
    )
    series = pd.concat([series.assign(unique_id=i) for i in range(10)]).reset_index(
        drop=True
    )
    return series


@pytest.fixture
def integer_freq_series():
    series = generate_series(5, freq="H", min_length=200)
    series["ds"] = series.groupby("unique_id", observed=True)["ds"].cumcount()
    return series


@pytest.fixture
def two_short_series():
    return generate_series(n_series=2, min_length=5, max_length=20)


@pytest.fixture
def two_short_series_with_time_features_train_future(two_short_series):
    train, future = time_features(
        two_short_series, freq="D", features=["year", "month"], h=5
    )
    return train, future


@pytest.fixture
def series_1MB_payload():
    series = generate_series(250, n_static_features=2)
    return series


@pytest.fixture(scope="module")
def air_passengers_df():
    return pd.read_csv(
        "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv",
        parse_dates=["timestamp"],
    )


@pytest.fixture(scope="module")
def air_passengers_renamed_df(air_passengers_df):
    df_copy = deepcopy(air_passengers_df)
    df_copy.rename(columns={"timestamp": "ds", "value": "y"}, inplace=True)
    df_copy.insert(0, "unique_id", "AirPassengers")
    return df_copy


@pytest.fixture(scope="module")
def air_passengers_renamed_df_with_index(air_passengers_renamed_df):
    df_copy = deepcopy(air_passengers_renamed_df)
    df_ds_index = df_copy.set_index("ds")[["unique_id", "y"]]
    df_ds_index.index = pd.DatetimeIndex(df_ds_index.index)
    return df_ds_index


@pytest.fixture
def df_freq_generator():
    def _df_freq(n_series, min_length, max_length, freq):
        df_freq = generate_series(
            n_series,
            min_length=min_length if freq != "15T" else 1_200,
            max_length=max_length if freq != "15T" else 2_000,
        )
        return df_freq

    return _df_freq


@pytest.fixture(scope="module")
def date_features_result(air_passengers_renamed_df):
    date_features = ["year", "month"]
    df_date_features, future_df = _maybe_add_date_features(
        df=air_passengers_renamed_df,
        X_df=None,
        h=12,
        freq="MS",
        features=date_features,
        one_hot=False,
        id_col="unique_id",
        time_col="ds",
        target_col="y",
    )
    return df_date_features, future_df, date_features


HYPER_PARAMS_TEST = [
    # finetune steps is unstable due
    # to numerical reasons
    # dict(finetune_steps=2),
    dict(),
    dict(clean_ex_first=False),
    dict(date_features=["month"]),
    dict(level=[80, 90]),
    # dict(level=[80, 90], finetune_steps=2),
]


@pytest.fixture(scope="module")
def train_test_split(air_passengers_renamed_df):
    df_ = deepcopy(air_passengers_renamed_df)
    df_test = df_.groupby("unique_id").tail(12)
    df_train = df_.drop(df_test.index)
    return df_train, df_test


@pytest.fixture(scope="module")
def exog_data(air_passengers_renamed_df, train_test_split):
    df_ = deepcopy(air_passengers_renamed_df)
    df_ex_ = df_.copy()
    df_ex_["exogenous_var"] = df_ex_["y"] + np.random.normal(size=len(df_ex_))
    df_train, df_test = train_test_split
    x_df_test = df_test.drop(columns="y").merge(df_ex_.drop(columns="y"))
    return df_ex_, df_train, df_test, x_df_test


@pytest.fixture(scope="module")
def large_series():
    return generate_series(20_000, min_length=1_000, max_length=1_000, freq="min")


@pytest.fixture(scope="module")
def anomaly_online_df():
    detection_size = 5
    n_series = 2
    size = 100
    ds = pd.date_range(start="2023-01-01", periods=size, freq="W")
    x = np.arange(size)
    y = 10 * np.sin(0.1 * x) + 12
    y = np.tile(y, n_series)
    y[size - 5] = 30
    y[2 * size - 1] = 30
    df = pd.DataFrame(
        {
            "unique_id": np.repeat(np.arange(1, n_series + 1), size),
            "ds": np.tile(ds, n_series),
            "y": y,
        }
    )
    return df, n_series, detection_size


@pytest.fixture(scope="module")
def distributed_n_series():
    return 4


@pytest.fixture(scope="module")
def renamer():
    return {
        "unique_id": "id_col",
        "ds": "time_col",
        "y": "target_col",
    }


@pytest.fixture(scope="module")
def distributed_series(distributed_n_series):
    series = generate_series(distributed_n_series, min_length=100)
    series["unique_id"] = series["unique_id"].astype(str)
    return series


@pytest.fixture(scope="module")
def distributed_df_x():
    df_x = pd.read_csv(
        "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-with-ex-vars.csv",
        parse_dates=["ds"],
    ).rename(columns=str.lower)
    return df_x


@pytest.fixture(scope="module")
def distributed_future_ex_vars_df():
    future_ex_vars_df = pd.read_csv(
        "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-future-ex-vars.csv",
        parse_dates=["ds"],
    ).rename(columns=str.lower)
    return future_ex_vars_df