"examples/multimodal/combine_lm_vision_checkpoints.sh" did not exist on "3aca141586a4b8cdc983c3ecf5f7baf60506c7f8"
7_why_timegpt.ipynb 83.7 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "!pip install -Uqq nixtla"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide \n",
    "from nixtla.utils import in_colab"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide \n",
    "IN_COLAB = in_colab()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "if not IN_COLAB:\n",
    "    from nixtla.utils import colab_badge\n",
    "    from dotenv import load_dotenv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Why TimeGPT?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this notebook, we compare the performance of TimeGPT against three forecasting models: the classical model (ARIMA), the machine learning model (LightGBM), and the deep learning model (N-HiTS), using a subset of data from the M5 Forecasting competition. We want to highlight three top-rated benefits our users love about TimeGPT:\n",
    "\n",
    "🎯 **Accuracy**: TimeGPT consistently outperforms traditional models by capturing complex patterns with precision.\n",
    "\n",
    "⚡ **Speed**: Generate forecasts faster without needing extensive training or tuning for each series.\n",
    "\n",
    "🚀 **Ease of Use**: Minimal setup and no complex preprocessing make TimeGPT accessible and ready to use right out of the box!\n",
    "\n",
    "Before diving into the notebook, please visit our [dashboard](https://dashboard.nixtla.io) to generate your TimeGPT `api_key` and give it a try yourself!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Table of Contents\n",
    "\n",
    "1. [Data Introduction](#1-data-introduction)\n",
    "2. [Model Fitting](#2-model-fitting-timegpt-arima-lightgbm-n-hits)\n",
    "    1. [Fitting TimeGPT](#21-timegpt)\n",
    "    2. [Fitting ARIMA](#22-classical-models-arima)\n",
    "    3. [Fitting Light GBM](#23-machine-learning-models-lightgbm)\n",
    "    4. [Fitting NHITS](#24-n-hits)\n",
    "3. [Results and Evaluation](#3-performance-comparison-and-results)\n",
    "4. [Conclusion](#4-conclusion)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "[![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Nixtla/nixtla/blob/main/nbs/docs/getting-started/7_why_timegpt.ipynb)"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#| echo: false\n",
    "if not IN_COLAB:\n",
    "    load_dotenv()\n",
    "    colab_badge('docs/getting-started/7_why_timegpt')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from nixtla import NixtlaClient\n",
    "from utilsforecast.plotting import plot_series\n",
    "from utilsforecast.losses import mae, rmse, smape\n",
    "from utilsforecast.evaluation import evaluate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nixtla_client = NixtlaClient(\n",
    "    # api_key = 'my_api_key_provided_by_nixtla'\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Data introduction"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this notebook, we’re working with an aggregated dataset from the M5 Forecasting - Accuracy competition. This dataset includes **7 daily time series**, each with **1,941 data points**. The last **28 data points** of each series are set aside as the test set, allowing us to evaluate model performance on unseen data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv('https://datasets-nixtla.s3.amazonaws.com/demand_example.csv', parse_dates=['ds'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead tr th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe thead tr:last-of-type th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th></th>\n",
       "      <th colspan=\"3\" halign=\"left\">ds</th>\n",
       "      <th colspan=\"4\" halign=\"left\">y</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th></th>\n",
       "      <th>min</th>\n",
       "      <th>max</th>\n",
       "      <th>count</th>\n",
       "      <th>min</th>\n",
       "      <th>mean</th>\n",
       "      <th>median</th>\n",
       "      <th>max</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>unique_id</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>FOODS_1</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2674.085523</td>\n",
       "      <td>2665.0</td>\n",
       "      <td>5493.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>FOODS_2</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>0.0</td>\n",
       "      <td>4015.984029</td>\n",
       "      <td>3894.0</td>\n",
       "      <td>9069.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>FOODS_3</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>10.0</td>\n",
       "      <td>16969.089129</td>\n",
       "      <td>16548.0</td>\n",
       "      <td>28663.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>HOBBIES_1</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2936.122617</td>\n",
       "      <td>2908.0</td>\n",
       "      <td>5009.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>HOBBIES_2</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>0.0</td>\n",
       "      <td>279.053065</td>\n",
       "      <td>248.0</td>\n",
       "      <td>871.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>HOUSEHOLD_1</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>0.0</td>\n",
       "      <td>6039.594539</td>\n",
       "      <td>5984.0</td>\n",
       "      <td>11106.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>HOUSEHOLD_2</th>\n",
       "      <td>2011-01-29</td>\n",
       "      <td>2016-05-22</td>\n",
       "      <td>1941</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1566.840289</td>\n",
       "      <td>1520.0</td>\n",
       "      <td>2926.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                    ds                      y                                \n",
       "                   min        max count   min          mean   median      max\n",
       "unique_id                                                                    \n",
       "FOODS_1     2011-01-29 2016-05-22  1941   0.0   2674.085523   2665.0   5493.0\n",
       "FOODS_2     2011-01-29 2016-05-22  1941   0.0   4015.984029   3894.0   9069.0\n",
       "FOODS_3     2011-01-29 2016-05-22  1941  10.0  16969.089129  16548.0  28663.0\n",
       "HOBBIES_1   2011-01-29 2016-05-22  1941   0.0   2936.122617   2908.0   5009.0\n",
       "HOBBIES_2   2011-01-29 2016-05-22  1941   0.0    279.053065    248.0    871.0\n",
       "HOUSEHOLD_1 2011-01-29 2016-05-22  1941   0.0   6039.594539   5984.0  11106.0\n",
       "HOUSEHOLD_2 2011-01-29 2016-05-22  1941   0.0   1566.840289   1520.0   2926.0"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.groupby('unique_id').agg({\"ds\":[\"min\",\"max\",\"count\"],\\\n",
    "                             \"y\":[\"min\",\"mean\",\"median\",\"max\"]})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(13391, 3) (196, 3)\n"
     ]
    }
   ],
   "source": [
    "df_train = df.query('ds <= \"2016-04-24\"')\n",
    "df_test = df.query('ds > \"2016-04-24\"')\n",
    "\n",
    "print(df_train.shape, df_test.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Model Fitting (TimeGPT, ARIMA, LightGBM, N-HiTS)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.1 TimeGPT\n",
    "TimeGPT offers a powerful, streamlined solution for time series forecasting, delivering state-of-the-art results with minimal effort. With TimeGPT, there's no need for data preprocessing or feature engineering -- simply initiate the Nixtla client and call `nixtla_client.forecast` to produce accurate, high-performance forecasts tailored to your unique time series.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:nixtla.nixtla_client:Validating inputs...\n",
      "INFO:nixtla.nixtla_client:Inferred freq: D\n",
      "INFO:nixtla.nixtla_client:Querying model metadata...\n",
      "INFO:nixtla.nixtla_client:Preprocessing dataframes...\n",
      "INFO:nixtla.nixtla_client:Calling Forecast Endpoint...\n"
     ]
    }
   ],
   "source": [
    "# Forecast with TimeGPT\n",
    "fcst_timegpt = nixtla_client.forecast(df = df_train,\n",
    "                       target_col = 'y', \n",
    "                       h=28,                              # Forecast horizon, predicts the next 28 time steps\n",
    "                       model='timegpt-1-long-horizon',    # Use the model for long-horizon forecasting\n",
    "                       finetune_steps=10,                 # Number of finetuning steps\n",
    "                       level = [90])                      # Generate a 90% confidence interval"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "metric\n",
       "rmse     592.607378\n",
       "smape      0.049403\n",
       "Name: TimeGPT, dtype: float64"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Evaluate performance and plot forecast\n",
    "fcst_timegpt['ds'] = pd.to_datetime(fcst_timegpt['ds'])\n",
    "test_df = pd.merge(df_test, fcst_timegpt, 'left', ['unique_id', 'ds'])\n",
    "evaluation_timegpt = evaluate(test_df, metrics=[rmse, smape], models=[\"TimeGPT\"])\n",
    "evaluation_timegpt.groupby(['metric'])['TimeGPT'].mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 Classical Models (ARIMA):\n",
    "Next, we applied ARIMA, a traditional statistical model, to the same forecasting task. Classical models use historical trends and seasonality to make predictions by relying on linear assumptions. However, they struggled to capture the complex, non-linear patterns within the data, leading to lower accuracy compared to other approaches. Additionally, ARIMA was slower due to its iterative parameter estimation process, which becomes computationally intensive for larger datasets."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> 📘 Why Use TimeGPT over Classical Models?\n",
    ">\n",
    "> * **Complex Patterns**: TimeGPT captures non-linear trends classical models miss.\n",
    ">\n",
    "> * **Minimal Preprocessing**: TimeGPT requires little to no data preparation.\n",
    ">\n",
    "> * **Scalability**: TimeGPT can efficiently scales across multiple series without retraining."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "from statsforecast import StatsForecast\n",
    "from statsforecast.models import AutoARIMA"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "#Initiate ARIMA model\n",
    "sf = StatsForecast(\n",
    "    models=[AutoARIMA(season_length=7)],\n",
    "    freq='D'\n",
    ")\n",
    "# Fit and forecast\n",
    "fcst_arima = sf.forecast(h=28, df=df_train) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "fcst_arima = pd.read_csv('../../assets/arima_rst.csv', parse_dates=['ds'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "metric\n",
       "rmse     724.957364\n",
       "smape      0.055018\n",
       "Name: AutoARIMA, dtype: float64"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "fcst_arima.reset_index(inplace=True)\n",
    "test_df = pd.merge(df_test, fcst_arima, 'left', ['unique_id', 'ds'])\n",
    "evaluation_arima = evaluate(test_df, metrics=[rmse, smape], models=[\"AutoARIMA\"])\n",
    "evaluation_arima.groupby(['metric'])['AutoARIMA'].mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.3 Machine Learning Models (LightGBM)\n",
    "\n",
    "Thirdly, we used a machine learning model, LightGBM, for the same forecasting task, implemented through the automated pipeline provided by our mlforecast library.\n",
    "While LightGBM can capture seasonality and patterns, achieving the best performance often requires detailed feature engineering, careful hyperparameter tuning, and domain knowledge. You can try our mlforecast library to simplify this process and get started quickly!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> 📘 Why Use TimeGPT over Machine Learning Models?\n",
    ">\n",
    "> * **Automatic Pattern Recognition**: Captures complex patterns from raw data, bypassing the need for feature engineering.\n",
    ">\n",
    "> * **Minimal Tuning**: Works well without extensive tuning.\n",
    ">\n",
    "> * **Scalability**: Forecasts across multiple series without retraining."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "import optuna\n",
    "from mlforecast.auto import AutoMLForecast, AutoLightGBM\n",
    "\n",
    "# Suppress Optuna's logging output\n",
    "optuna.logging.set_verbosity(optuna.logging.ERROR)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "# Initialize an automated forecasting pipeline using AutoMLForecast.\n",
    "mlf = AutoMLForecast(\n",
    "    models=[AutoLightGBM()],\n",
    "    freq='D',\n",
    "    season_length=7,            \n",
    "    fit_config=lambda trial: {'static_features': ['unique_id']}\n",
    ")\n",
    "\n",
    "# Fit the model to the training dataset.\n",
    "mlf.fit(\n",
    "    df=df_train.astype({'unique_id': 'category'}),\n",
    "    n_windows=1,\n",
    "    h=28,\n",
    "    num_samples=10,\n",
    ")\n",
    "fcst_lgbm = mlf.predict(28)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "fcst_lgbm = pd.read_csv('../../assets/lgbm_rst.csv', parse_dates=['ds'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "metric\n",
       "rmse     687.773744\n",
       "smape      0.051448\n",
       "Name: AutoLightGBM, dtype: float64"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_df = pd.merge(df_test, fcst_lgbm, 'left', ['unique_id', 'ds'])\n",
    "evaluation_lgbm = evaluate(test_df, metrics=[rmse, smape], models=[\"AutoLightGBM\"])\n",
    "evaluation_lgbm.groupby(['metric'])['AutoLightGBM'].mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.4 N-HiTS\n",
    "\n",
    "Lastly, we used N-HiTS, a state-of-the-art deep learning model designed for time series forecasting. The model produced accurate results, demonstrating its ability to capture complex, non-linear patterns within the data. However, setting up and tuning N-HiTS required significantly more time and computational resources compared to TimeGPT."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> 📘 Why Use TimeGPT Over Deep Learning Models?\n",
    ">\n",
    "> * **Faster Setup**: Quick setup and forecasting, unlike the lengthy configuration and training times of neural networks.\n",
    ">\n",
    "> * **Less Tuning**: Performs well with minimal tuning and preprocessing, while neural networks often need extensive adjustments.\n",
    ">\n",
    "> * **Ease of Use**: Simple deployment with high accuracy, making it accessible without deep technical expertise."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "from neuralforecast.core import NeuralForecast\n",
    "from neuralforecast.models import NHITS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "# Initialize the N-HiTS model.\n",
    "models = [NHITS(h=28, \n",
    "                input_size=28, \n",
    "                max_steps=100)]\n",
    "\n",
    "# Fit the model using training data\n",
    "nf = NeuralForecast(models=models, freq='D')\n",
    "nf.fit(df=df_train)\n",
    "fcst_nhits = nf.predict()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "fcst_nhits = pd.read_csv('../../assets/nhits_rst.csv', parse_dates=['ds'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "metric\n",
       "rmse     605.011948\n",
       "smape      0.053446\n",
       "Name: NHITS, dtype: float64"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_df = pd.merge(df_test,fcst_nhits, 'left', ['unique_id', 'ds'])\n",
    "evaluation_nhits = evaluate(test_df, metrics=[rmse, smape], models=[\"NHITS\"])\n",
    "evaluation_nhits.groupby(['metric'])['NHITS'].mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Performance Comparison and Results:\n",
    "The performance of each model is evaluated using RMSE (Root Mean Squared Error) and SMAPE (Symmetric Mean Absolute Percentage Error). While RMSE emphasizes the models’ ability to control significant errors, SMAPE provides a relative performance perspective by normalizing errors as percentages. Below, we present a snapshot of performance across all groups. The results demonstrate that TimeGPT outperforms other models on both metrics.\n",
    "\n",
    "🌟 For a deeper dive into benchmarking, check out our benchmark repository. The summarized results are displayed below:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Overall Performance Metrics\n",
    "\n",
    "| **Model**        | **RMSE** | **SMAPE** |\n",
    "|------------------|----------|-----------|\n",
    "| ARIMA            | 724.9   | 5.50%     |\n",
    "| LightGBM     | 687.8    | 5.14%     |\n",
    "| N-HiTS           | 605.0    | 5.34%     |\n",
    "| **TimeGPT**      | **592.6**| **4.94%** |\n",
    " \n",
    "\n",
    "#### Breakdown for Each Time-series\n",
    "Followed below are the metrics for each individual time series groups. TimeGPT consistently delivers accurate forecasts across all time series groups. In many cases, it performs as well as or better than data-specific models, showing its versatility and reliability across different datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| echo: false\n",
    "evaluation_df = evaluation_arima.merge(evaluation_lgbm, on = ['unique_id','metric'], how = 'left')\\\n",
    "                 .merge(evaluation_nhits, on = ['unique_id','metric'], how = 'left')\\\n",
    "                 .merge(evaluation_timegpt, on = ['unique_id','metric'], how = 'left')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClZklEQVR4nOzdd1xW9f//8efFBlkuQHKAI3FrmmaaI0lEU/Pr3iu1XJllRsNVScvStGypaImamWaO3CvFnFiaWRoqKmI5wIkC5/dHP66Pl4BCjOsSHvfb7dzqnPM+57zeh0t98bre531MhmEYAgAAAAAAAADYDDtrBwAAAAAAAAAAsEThFgAAAAAAAABsDIVbAAAAAAAAALAxFG4BAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgAAAAAAAABsDIVbAAAAAAAAALAxFG4BAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgDuQwEBAerXr5+1w4AV9evXTwEBAf/p2GbNmqlZs2a5Gg8AAEBOREREyGQy6fjx49YOBVZy/PhxmUwmRUREZPvYzZs3y2QyafPmzbkeF2BNFG6BAi4tAUpbHBwc9MADD6hfv346ffp0uvbNmjWTyWRSpUqVMjzfunXrzOf69ttvLfb9+uuv6tSpk8qVKycXFxc98MADeuKJJzR9+nSLdgEBARYx3b60atUqS/2Kj4/Xiy++qKCgILm5ualIkSKqW7eu3nzzTV26dClrNwd5rkuXLjKZTBo7dqy1Q8kzaZ/dp59+OsP9r776qrnNP//8k8/RAQCQv06fPq02bdrI09NTVatW1Q8//JCuzXfffScfHx8lJCSk25eamqp58+apQYMGKlasmDw8PPTggw+qT58+2rlzp7ldWpHGZDLp66+/zjCWRo0ayWQyqXr16hnuT0lJkb+/v0wmk1avXp1hmwkTJljkqm5ubqpatapee+01JSYmmtvdmXPfudwe+90sXbpUoaGhKlGihJycnOTv768uXbpo48aNWToeee/w4cMymUxycXEpsL93pH3u7ezsFBsbm25/YmKiXF1dZTKZNHz4cCtECBQeDtYOAED+mDRpkgIDA3Xjxg3t3LlTERER+umnn3Tw4EG5uLhYtHVxcdHRo0e1a9cu1a9f32Lf/Pnz5eLiohs3blhs37Fjh5o3b66yZctq0KBB8vPzU2xsrHbu3Klp06ZpxIgRFu1r166tF154IV2c/v7+9+zL7t271bp1a125ckW9evVS3bp1JUl79uzR22+/ra1bt2rt2rVZui/3qyNHjsjOzra/e0tMTNQPP/yggIAALViwQG+//bZMJpO1w8oTLi4uWrJkiT755BM5OTlZ7FuwYEGGf2YAACiI+vbtq9OnT+udd97R9u3b1blzZ/3+++/mp0Ru3LihF198UW+++aa8vLzSHT9y5Eh9/PHHat++vXr27CkHBwcdOXJEq1evVvny5fXII49YtHdxcVFkZKR69eplsf348ePasWNHujz3dhs3blRcXJwCAgI0f/58hYaGZtp25syZcnd315UrV7R27Vq99dZb2rhxo7Zv326R36Tl3HeqWLFipueWJMMwNGDAAEVERKhOnToaPXq0/Pz8FBcXp6VLl6pFixbavn27Hn300bue537Wu3dvdevWTc7OztYO5a6+/vpr+fn56eLFi/r2228z/fK+IHB2dtaCBQv00ksvWWz/7rvvrBQRUPhQuAUKidDQUNWrV0+S9PTTT6tEiRJ65513tHz5cnXp0sWibYUKFZScnKwFCxZYFG5v3LihpUuXqk2bNlqyZInFMW+99Za8vLy0e/dueXt7W+w7d+5cungeeOCBdAl2Vly6dEkdOnSQvb299u/fr6CgoHRxfPHFF9k+7/3AMAzduHFDrq6uNp/QStKSJUuUkpKi2bNn6/HHH9fWrVvVtGnTXDn31atXVaRIkVw5V25o1aqVli9frtWrV6t9+/bm7Tt27FBMTIw6duyY7s8MAAAFzfXr17Vx40Zt3rxZTZo00TPPPKMdO3ZozZo1GjJkiCTp/fffl5eXV4bFrvj4eH3yyScaNGiQPv/8c4t9U6dO1d9//53umNatW2v58uX6559/VKJECfP2yMhI+fr6qlKlSrp48WKG8X799dd66KGH1LdvX73yyit3zS86depkPv8zzzyjjh076rvvvtPOnTvVsGFDc7vbc+7smDJliiIiIjRq1Ch98MEHFsXgV199VV999ZUcHArmr+9p993e3l729vbWDueuDMNQZGSkevTooZiYGM2fPz/XCrepqam6efPmXb9syG+tW7fOsHAbGRmZ4e+EAHKfbQ/XApBnHnvsMUnSsWPHMtzfvXt3LVq0SKmpqeZtP/zwg65du5au0Jt2nmrVqqUr2kqSj49P7gQt6bPPPtPp06f1wQcfpCvaSpKvr69ee+01i22ffPKJqlWrJmdnZ/n7+2vYsGHpHmtq1qyZqlevrl9++UVNmzaVm5ubKlasaJ4OYsuWLWrQoIFcXV1VuXJlrV+/3uL4tMeJfv/9d3Xp0kWenp4qXry4nnvuuXQjLefMmaPHH39cPj4+cnZ2VtWqVTVz5sx0fQkICNCTTz6pNWvWqF69enJ1ddVnn31m3nf7HLe3bt3SxIkTValSJbm4uKh48eJq3Lix1q1bZ3HOjRs36rHHHlORIkXk7e2t9u3b6/Dhwxn25ejRo+rXr5+8vb3l5eWl/v3769q1axn8VDI2f/58PfHEE2revLmqVKmi+fPnZ9gu7Z6VLFnSfH9fffXVdPH89ttv6tGjh4oWLarGjRtLkpKTk/XGG2+oQoUKcnZ2VkBAgF555RUlJSVZXGPPnj0KCQlRiRIl5OrqqsDAQA0YMMCizcKFC1W3bl15eHjI09NTNWrU0LRp07LU1wceeEBNmjRRZGRkuntQo0aNTB/RXLx4serWrStXV1eVKFFCvXr1ynAKk2XLlql69epycXFR9erVtXTp0gzPl5qaqqlTp6patWpycXGRr6+vhgwZkukvrLebPn26qlWrJjc3NxUtWlT16tVL1x8AAO7mxo0bMgxDRYsWlfTvdELe3t7m/OH06dN6++23NW3atAyfHIqJiZFhGGrUqFG6fSaTKcOcsn379nJ2dtbixYsttkdGRqpLly6ZFgKvX7+upUuXqlu3burSpYuuX7+u77//Pst9ffzxx80x59T169cVHh6uoKAgvf/++xk+odS7d2+LARV//fWXOnfurGLFisnNzU2PPPKIVq5caXFM2nQS33zzjSZOnKgHHnhAHh4e6tSpkxISEpSUlKRRo0bJx8dH7u7u6t+/f7ocKu1R+Pnz56ty5cpycXFR3bp1tXXrVot2J06c0NChQ1W5cmW5urqqePHi6ty5c7r5atOmlNiyZYuGDh0qHx8flS5d2mLf7cdkJYe7evWqXnjhBZUpU0bOzs6qXLmy3n//fRmGkWFf0vIqZ2dnVatWTT/++OPdf0C32b59u44fP65u3bqpW7du2rp1q06dOpWuXWpqqqZNm6YaNWrIxcVFJUuWVKtWrbRnz54M723a7yppsezfv1+hoaHy9PSUu7u7WrRokW66jazk/2fPnlX//v1VunRpOTs7q1SpUmrfvn2W5xHu0aOHoqOj9fvvv1ucc+PGjerRo0eGx5w7d04DBw6Ur6+vXFxcVKtWLc2dOzddu0uXLqlfv37y8vKSt7e3+vbtm+nUE7///rs6deqkYsWKycXFRfXq1dPy5cvvGf+ff/6pjh07ys/PTy4uLipdurS6deuW4TQtgK0qmF/ZAbintH+s0xLrO/Xo0UMTJkzQ5s2bzYlpZGSkWrRokWHSXK5cOUVFRengwYOZFqlud+vWrQzn+yxSpIhcXV0zPW758uVydXVVp06d7nkN6d+i38SJExUcHKxnn31WR44c0cyZM7V7925t375djo6O5rYXL17Uk08+qW7duqlz586aOXOmunXrpvnz52vUqFF65pln1KNHD7333nvq1KmTYmNj5eHhYXG9Ll26KCAgQOHh4dq5c6c++ugjXbx4UfPmzTO3mTlzpqpVq6Z27drJwcFBP/zwg4YOHarU1FQNGzbM4nxHjhxR9+7dNWTIEA0aNEiVK1fOtJ/h4eF6+umnVb9+fSUmJmrPnj3at2+fnnjiCUnS+vXrFRoaqvLly2vChAm6fv26pk+frkaNGmnfvn3pXnTVpUsXBQYGKjw8XPv27dOXX34pHx8fvfPOO/e872fOnNGmTZvMSVr37t314YcfasaMGRZTCfzyyy967LHH5OjoqMGDBysgIEDHjh3TDz/8oLfeesvinJ07d1alSpU0efJkcyL+9NNPa+7cuerUqZNeeOEF/fzzzwoPD9fhw4fNxc1z586pZcuWKlmypF5++WV5e3vr+PHjFo94rVu3Tt27d1eLFi3M/Tt8+LC2b9+u55577p79lf79M/Pcc8/pypUrcnd3V3JyshYvXqzRo0dnOE1CRESE+vfvr4cffljh4eGKj4/XtGnTtH37du3fv9/8JcjatWvVsWNHVa1aVeHh4Tp//rw5Ab/TkCFDzOcdOXKkYmJiNGPGDO3fvz/d5/12X3zxhUaOHKlOnTqZv2z45Zdf9PPPP2ealAMAcKeiRYuqQoUKmjx5siZPnqwdO3YoOjra/L6Dl156SaGhoWrSpEmGx5crV07Sv19sdu7cWW5ubve8ppubm9q3b68FCxbo2WeflSQdOHBAhw4d0pdffqlffvklw+OWL1+uK1euqFu3bvLz81OzZs00f/78LP+7lzb4oXjx4hbbExIS0uW4JpMpXbvb/fTTT7pw4YJGjRqVpRGn8fHxevTRR3Xt2jWNHDlSxYsX19y5c9WuXTt9++236tChg0X78PBwubq66uWXX9bRo0c1ffp0OTo6ys7OThcvXtSECRPMU6kFBgZq3LhxFsdv2bJFixYt0siRI+Xs7KxPPvlErVq10q5du8x5/+7du7Vjxw5169ZNpUuX1vHjxzVz5kw1a9ZMv/32W7qf5dChQ1WyZEmNGzdOV69ezbCfWcnhDMNQu3bttGnTJg0cOFC1a9fWmjVrNGbMGJ0+fVoffvhhunv93XffaejQofLw8NBHH32kjh076uTJk3f9GaWZP3++KlSooIcffljVq1eXm5ubFixYoDFjxli0GzhwoCIiIhQaGqqnn35aycnJ2rZtm3bu3GkxInvjxo365ptvNHz4cJUoUUIBAQE6dOiQHnvsMXl6euqll16So6OjPvvsMzVr1sw8mETKWv7fsWNHHTp0SCNGjFBAQIDOnTundevW6eTJk1l6yW2TJk1UunRpRUZGatKkSZKkRYsWyd3dXW3atEnX/vr162rWrJmOHj2q4cOHKzAwUIsXL1a/fv106dIlc15tGIbat2+vn376Sc8884yqVKmipUuXqm/fvunOeejQITVq1EgPPPCAXn75ZRUpUkTffPONnnrqKS1ZsiTd5z3NzZs3FRISoqSkJI0YMUJ+fn46ffq0VqxYoUuXLmU4VQtgkwwABdqcOXMMScb69euNv//+24iNjTW+/fZbo2TJkoazs7MRGxtr0b5p06ZGtWrVDMMwjHr16hkDBw40DMMwLl68aDg5ORlz5841Nm3aZEgyFi9ebD5u7dq1hr29vWFvb280bNjQeOmll4w1a9YYN2/eTBdTuXLlDEkZLuHh4XftT9GiRY1atWplqe/nzp0znJycjJYtWxopKSnm7TNmzDAkGbNnz7botyQjMjLSvO333383JBl2dnbGzp07zdvXrFljSDLmzJlj3jZ+/HhDktGuXTuLGIYOHWpIMg4cOGDedu3atXSxhoSEGOXLl7fYlnaffvzxx3Tty5UrZ/Tt29e8XqtWLaNNmzZ3uRuGUbt2bcPHx8c4f/68eduBAwcMOzs7o0+fPun6MmDAAIvjO3ToYBQvXvyu10jz/vvvG66urkZiYqJhGIbxxx9/GJKMpUuXWrRr0qSJ4eHhYZw4ccJie2pqarp4unfvbtEmOjrakGQ8/fTTFttffPFFQ5KxceNGwzAMY+nSpYYkY/fu3ZnG+9xzzxmenp5GcnJylvp3O0nGsGHDjAsXLhhOTk7GV199ZRiGYaxcudIwmUzG8ePHzX34+++/DcMwjJs3bxo+Pj5G9erVjevXr5vPtWLFCkOSMW7cOPO22rVrG6VKlTIuXbpk3rZ27VpDklGuXDnztm3bthmSjPnz51vE9+OPP6bb3rRpU6Np06bm9fbt25v/3AMAkBMbNmwwihYtas7tRo0aZRiGYWzfvt1wdXU1jh8/ftfj+/TpY0gyihYtanTo0MF4//33jcOHD6drd3s+umLFCsNkMhknT540DMMwxowZY86rbs9tb/fkk08ajRo1Mq9//vnnhoODg3Hu3DmLdmn/hh85csT4+++/jZiYGOOzzz4znJ2dDV9fX+Pq1auGYfwv585ocXZ2vmufp02blmGelJlRo0YZkoxt27aZt12+fNkIDAw0AgICzHlv2j2qXr26RU7evXt3w2QyGaGhoRbnbdiwoUVuYRiGuQ979uwxbztx4oTh4uJidOjQwbwto/w2KirKkGTMmzfPvC3tPjVu3Dhd3pW2LyYmxjCMrOVwy5YtMyQZb775psX2Tp06GSaTyTh69KhFX5ycnCy2HThwwJBkTJ8+PdNrpLl586ZRvHhx49VXXzVv69GjR7rfTTZu3GhIMkaOHJnuHLfnuGm/Zxw6dMiizVNPPWU4OTkZx44dM287c+aM4eHhYTRp0sS87V75/8WLFw1JxnvvvXfPvt3p9tz1xRdfNCpWrGje9/DDDxv9+/c392HYsGHmfVOnTjUkGV9//bV5282bN42GDRsa7u7u5t8N0n5u7777rrldcnKy8dhjj6X7PatFixZGjRo1jBs3bpi3paamGo8++qhRqVIl87a0z/umTZsMwzCM/fv3p/udFbgfMVUCUEgEBwerZMmSKlOmjDp16qQiRYpo+fLlGY7aS9OjRw999913unnzpr799lvZ29tn+o3mE088oaioKLVr104HDhzQu+++q5CQED3wwAMZPsbSoEEDrVu3Lt3SvXv3u/YjMTEx3SjXzKxfv143b97UqFGjLB7HGzRokDw9PdM9Tubu7q5u3bqZ1ytXrixvb29VqVLF/M12WuzSv4+o3enOEbNpL2VbtWqVedvtI4rTRmU0bdpUf/31V7rHdgIDAxUSEnLPvnp7e+vQoUP6888/M9wfFxen6Oho9evXT8WKFTNvr1mzpp544gmL+NI888wzFuuPPfaYzp8/b/EG5czMnz9fbdq0Mf+sKlWqpLp161pMl/D3339r69atGjBggMqWLWtxfEaPCN4ZT1rMo0ePttie9tK7tJ9v2sjVFStW6NatWxnG6+3tratXr6abWiI7ihYtqlatWmnBggWS/h2h/uijj5pHD91uz549OnfunIYOHWoxj1mbNm0UFBRkjj3t59a3b1+LUQFPPPGEqlatanHOxYsXy8vLS0888YT++ecf81K3bl25u7tr06ZNmcbu7e2tU6dOaffu3f+5/wAASP9OIXDy5Ent3LlTJ0+e1IcffqjU1FSNHDlSL7zwgsqVK6eZM2cqKChIlStX1qeffmpx/Jw5czRjxgwFBgZq6dKlevHFF1WlShW1aNEiw+mEJKlly5YqVqyYFi5cKMMwtHDhwrvmlOfPn9eaNWss2nTs2NE8rUBGKleurJIlSyowMFBDhgxRxYoVtXLlynQjST/++ON0+e3q1avves/Scqus5rirVq1S/fr1zVNHSf/msYMHD9bx48f122+/WbTv06ePxVM3DRo0ML8M7XYNGjRQbGyskpOTLbY3bNjQ/DJgSSpbtqzat2+vNWvWKCUlRZJlfnvr1i2dP39eFStWlLe3t/bt25euD4MGDbrn6OKs5HCrVq2Svb29Ro4cabH9hRdekGEY6e59cHCwKlSoYF6vWbOmPD09M8zr77R69WqdP3/e4nPTvXt38wjvNEuWLJHJZNL48ePTnePOHLdp06YWOV1KSorWrl2rp556SuXLlzdvL1WqlHr06KGffvrJ/Hm5V/7v6uoqJycnbd68OUvTZmWmR48eOnr0qHbv3m3+b2Yj01etWiU/Pz+Le+To6KiRI0fqypUr2rJli7mdg4ODeZS8JNnb26d7ofWFCxe0ceNGdenSRZcvXzbnt+fPn1dISIj+/PPPTP9eSMud16xZk63p3gBbQ+EWKCTSkshvv/1WrVu31j///HPPF1ylzf+zevVqzZ8/X08++eRdE8qHH35Y3333nS5evKhdu3YpLCxMly9fVqdOndIlkCVKlFBwcHC6JaMi1+08PT11+fLlLPX5xIkTkpRuegEnJyeVL1/evD9N6dKl0yVTXl5eKlOmTLptkjJMgCpVqmSxXqFCBdnZ2VnMI7V9+3YFBweb55ktWbKkXnnlFUnKsHCbFZMmTdKlS5f04IMPqkaNGhozZozFo4GZ3QtJqlKliv755590j6ndWUxNm1bjXonf4cOHtX//fjVq1EhHjx41L82aNdOKFSvMyWZagpyVqTWk9PfixIkTsrOzS/eWZj8/P3l7e5v73LRpU3Xs2FETJ05UiRIl1L59e82ZM8diDrehQ4fqwQcfVGhoqEqXLq0BAwZka76zND169DA/frZs2bJMk9q7/TyCgoLM+9P+e+fnKqNj//zzTyUkJMjHx0clS5a0WK5cuZLhSwLTjB07Vu7u7qpfv74qVaqkYcOGafv27VnrNAAAd3B3d1eDBg3MOdScOXN09uxZvfzyy1q/fr3GjBmjt99+W++++65eeOEFiy8X7ezsNGzYMO3du1f//POPvv/+e4WGhmrjxo0WX7DfztHRUZ07d1ZkZKS2bt2q2NjYu055sGjRIt26dUt16tQx5ykXLlxQgwYNMp2Tf8mSJVq3bp02b96so0eP6uDBgxbFzDT169dPl982b978rvfL09NTkrKV42aW06Xtv92dOV1aLptRjpuampouH80oD3nwwQd17do18wvjrl+/rnHjxpnnmS1RooRKliypS5cuZTifaFZy3KzkcCdOnJC/v3+631Gyei+kf3PcrBQ2v/76awUGBsrZ2dn8ualQoYLc3NwsPjfHjh2Tv7+/xWCJzNx5H/7++29du3Yt059vamqqYmNjJd07/3d2dtY777yj1atXy9fXV02aNNG7776rs2fP3jOu29WpU0dBQUGKjIzU/Pnz5efnZ55K704nTpxQpUqV0s1hfefP48SJEypVqpTc3d0t2t3Z76NHj8owDL3++uvp8tu0wnhmOW5gYKBGjx6tL7/8UiVKlFBISIg+/vhj5rfFfYfCLVBIpCWRHTt21PLly1W9enX16NFDV65cyfSYUqVKqVmzZpoyZYq2bt2a5Tm/nJyc9PDDD2vy5MmaOXOmbt26le6FEf9VUFCQ/vjjD928eTNXzne7zL71z2y7cccLDzJyZyH42LFjatGihf755x998MEHWrlypdatW6fnn39ekixeBifprvP93q5JkyY6duyYZs+ererVq+vLL7/UQw89pC+//DJLx2fkv/b766+/liQ9//zzqlSpknmZMmWKbty48Z/fPpvZvchodO6d+7/99ltFRUVp+PDhOn36tAYMGKC6deuaP/8+Pj6Kjo7W8uXLzfOkhYaGZjjP1t20a9dOzs7O6tu3r5KSkjJ8kV9eSU1NlY+PT4Yj2detW2eelywjVapU0ZEjR7Rw4UI1btxYS5YsUePGjTMcKQIAQHYkJibq1Vdf1dtvv60iRYpowYIF6tSpk5566im1b99enTp1yrRYWrx4cbVr106rVq1S06ZN9dNPP6UrxKVJe4nShAkTVKtWrXRPptwu7XqNGjWyyFV++uknRUVFZTj6skmTJgoODlbTpk0tRmzmhrQX7v7666+5et40eZHj3mnEiBF666231KVLF33zzTdau3at1q1bp+LFi6fLb6Ws5bhZyeGy67/2OTExUT/88INiYmIsPjNVq1bVtWvXFBkZ+Z/uW1Zz/YxkJf8fNWqU/vjjD4WHh8vFxUWvv/66qlSpov3792frWj169NCiRYsUGRmprl27ZvhywbyQ9tl58cUXM81x7xzEcbspU6bol19+0SuvvKLr169r5MiRqlatWoYvlANsFYVboBCyt7dXeHi4zpw5oxkzZty1bY8ePbRt2zZ5enqqdevW2b5W2uT7cXFx/ynWO7Vt21bXr1/PUvEvbfTukSNHLLbfvHlTMTEx9xzd+1/c+ajS0aNHlZqaap78/4cfflBSUpKWL1+uIUOGqHXr1goODs5R0pamWLFi6t+/vxYsWKDY2FjVrFlTEyZMkJT5vZD+fUtriRIlVKRIkRzHYBiGIiMj1bx5cy1evDjdUrNmTfMvS2mPfx08ePA/XatcuXJKTU1Nd8/j4+N16dKldD/fRx55RG+99Zb27Nmj+fPn69ChQ1q4cKF5v5OTk9q2batPPvlEx44d05AhQzRv3jwdPXo0yzG5urrqqaee0ubNm/XEE0+oRIkSmcYuZfzzOHLkiHl/2n8zegTuzmMrVKig8+fPq1GjRhmOZq9Vq9ZdYy9SpIi6du2qOXPm6OTJk2rTpo3eeuutDF+sBgBAVk2aNEmBgYHq2bOnpH9fYOrv72/e7+/vn+mjzre7V07ZuHFjlS1bVps3b77rYIOYmBjt2LFDw4cPT5enLFq0SE5OToqMjMxOF3OscePGKlq0qBYsWGCeeuBuypUrl2lOl7Y/N2WUh/zxxx9yc3NTyZIlJUnffvut+vbtqylTpqhTp0564okn1LhxY126dCnH179bDleuXDmdOXMm3Wjl3L4X3333nW7cuKGZM2em+9y8+eabOnHihPlppQoVKujMmTO6cOFCtq9TsmRJubm5ZfrztbOzsxgpfbf8P02FChX0wgsvaO3atTp48KBu3rypKVOmZCuuHj16KC4uTn/88cdd/3yVK1dOf/75Z7pi/Z0/j3LlyikuLi5dAf7Ofqf9vuDo6JhhfhscHHzPKUZq1Kih1157TVu3btW2bdt0+vTpdFO0ALaMwi1QSDVr1kz169fX1KlT71qY6dSpk8aPH69PPvlETk5OmbbbtGlTht8yp81DmtHjPv/FM888o1KlSumFF17QH3/8kW7/uXPn9Oabb0r6dw4rJycnffTRRxaxzZo1SwkJCRm+CTWnPv74Y4v1tLcoh4aGSvrft/y3x5OQkKA5c+bk6Lrnz5+3WHd3d1fFihXNj5KVKlVKtWvX1ty5cy0S6IMHD2rt2rX/qSifke3bt+v48ePq37+/OnXqlG7p2rWrNm3apDNnzqhkyZJq0qSJZs+erZMnT1qcJysjFtJinjp1qsX2Dz74QJLMP9+LFy+mO1/t2rUlyXx/7rx/dnZ2qlmzpkWbrHrxxRc1fvx4vf7665m2qVevnnx8fPTpp59anH/16tU6fPiwOfbbf263P9a1bt26dNOPdOnSRSkpKXrjjTfSXS85Ofmuvzjd2X8nJydVrVpVhmFkOqccAAD38scff2jGjBmaNm2a+QkZX19fcxFH+neKJT8/P0nS2bNn0/37Jv37pfuGDRsynCIpjclk0kcffaTx48erd+/emcaU9gXySy+9lC5P6dKli5o2bZrpCOC84ubmprFjx+rw4cMaO3ZshnnQ119/rV27dkn6NwfatWuXoqKizPuvXr2qzz//XAEBAXcdbfxfREVFWcxTGxsbq++//14tW7Y057b29vbp4p4+fXqWCtGZyUoO17p1a6WkpKQbjPLhhx/KZDKZc/Cc+vrrr1W+fHk988wz6T43L774otzd3c2fm44dO8owDE2cODHdee6V49rb26tly5b6/vvvLaZai4+PV2RkpBo3bmyeWuNe+f+1a9fS/Z5XoUIFeXh4ZDu/rVChgqZOnarw8HDVr18/03atW7fW2bNntWjRIvO25ORkTZ8+Xe7u7mratKm5XXJysmbOnGlul5KSYv7dKY2Pj4+aNWumzz77LMMvbdKm6shIYmJiuvmaa9SoITs7u2z3H7AmB2sHAMB6xowZo86dOysiIiLdi5/SeHl5pfvWNiMjRozQtWvX1KFDBwUFBenmzZvasWOHFi1apICAAPXv39+i/enTp82P1N/O3d1dTz31VKbXKVq0qJYuXarWrVurdu3a6tWrl3l+sX379mnBggVq2LChpH+/sQ4LC9PEiRPVqlUrtWvXTkeOHNEnn3yihx9+WL169bpnv7IrJiZG7dq1U6tWrRQVFaWvv/5aPXr0MI92bNmypXlk55AhQ3TlyhV98cUX8vHxydGo5KpVq6pZs2aqW7euihUrpj179ujbb7/V8OHDzW3ee+89hYaGqmHDhho4cKCuX7+u6dOnZ/lnnBXz58+Xvb19pkXxdu3a6dVXX9XChQs1evRoffTRR2rcuLEeeughDR48WIGBgTp+/LhWrlyp6Ojou16rVq1a6tu3rz7//HNdunRJTZs21a5duzR37lw99dRT5vnk5s6dq08++UQdOnRQhQoVdPnyZX3xxRcWo8iffvppXbhwQY8//rhKly6tEydOaPr06apdu7Z5Tq6sqlWr1j1Htzo6Ouqdd95R//791bRpU3Xv3l3x8fGaNm2aAgICzFNnSFJ4eLjatGmjxo0ba8CAAbpw4YKmT5+uatWqWYxSaNq0qYYMGaLw8HBFR0erZcuWcnR01J9//qnFixdr2rRp6tSpU4bxtGzZUn5+fmrUqJF8fX11+PBhzZgxw+IFcwAAZNfzzz+vrl27WhR6OnXqpPbt25vn9//hhx+0YsUKSdKpU6dUv359Pf7442rRooX8/Px07tw5LViwQAcOHNCoUaMyfZpFktq3b6/27dvfNab58+erdu3a6eZ3TdOuXTuNGDFC+/bt00MPPZTdLmv16tUWhek0jz76qMXLpu40ZswYHTp0SFOmTNGmTZvUqVMn+fn56ezZs1q2bJl27dqlHTt2SJJefvllLViwQKGhoRo5cqSKFSumuXPnKiYmRkuWLMn1x9irV6+ukJAQjRw5Us7Ozvrkk08kyaIw+eSTT+qrr76Sl5eXqlatqqioKK1fv17Fixf/z9fNSg7Xtm1bNW/eXK+++qqOHz+uWrVqae3atfr+++81atSoXJnW4syZM9q0aVO6F6ClcXZ2VkhIiBYvXqyPPvpIzZs3V+/evfXRRx/pzz//VKtWrZSamqpt27apefPmFvl5Rt58802tW7dOjRs31tChQ+Xg4KDPPvtMSUlJevfdd83t7pX///HHH2rRooW6dOmiqlWrysHBQUuXLlV8fHym80XfzXPPPXfPNoMHD9Znn32mfv36ae/evQoICNC3336r7du3a+rUqea8sm3btmrUqJFefvllHT9+XFWrVtV3332X4fyzH3/8sRo3bqwaNWpo0KBBKl++vOLj4xUVFaVTp07pwIEDGcayceNGDR8+XJ07d9aDDz6o5ORkffXVV7K3t1fHjh2z3X/AagwABdqcOXMMScbu3bvT7UtJSTEqVKhgVKhQwUhOTjYMwzCaNm1qVKtW7a7n3LRpkyHJWLx4sXnb6tWrjQEDBhhBQUGGu7u74eTkZFSsWNEYMWKEER8fb3F8uXLlDEkZLuXKlctSv86cOWM8//zzxoMPPmi4uLgYbm5uRt26dY233nrLSEhIsGg7Y8YMIygoyHB0dDR8fX2NZ5991rh48aJFm8z6Xa5cOaNNmzbptksyhg0bZl4fP368Icn47bffjE6dOhkeHh5G0aJFjeHDhxvXr1+3OHb58uVGzZo1DRcXFyMgIMB45513jNmzZxuSjJiYmHteO21f3759zetvvvmmUb9+fcPb29twdXU1goKCjLfeesu4efOmxXHr1683GjVqZLi6uhqenp5G27Ztjd9++82iTVpf/v77b4vtaZ+l22O83c2bN43ixYsbjz32WIb70wQGBhp16tQxrx88eNDo0KGD4e3tbbi4uBiVK1c2Xn/99XvGYxiGcevWLWPixIlGYGCg4ejoaJQpU8YICwszbty4YW6zb98+o3v37kbZsmUNZ2dnw8fHx3jyySeNPXv2mNt8++23RsuWLQ0fHx/DycnJKFu2rDFkyBAjLi7urn0xjPSfhYxk1odFixYZderUMZydnY1ixYoZPXv2NE6dOpXu+CVLlhhVqlQxnJ2djapVqxrfffed0bdv3wz/vHz++edG3bp1DVdXV8PDw8OoUaOG8dJLLxlnzpwxt2natKnRtGlT8/pnn31mNGnSxChevLjh7OxsVKhQwRgzZky6P0sAAGTVypUrDXd3d4t/f9KEh4cb/v7+RqlSpYx33nnHvD0xMdGYNm2aERISYpQuXdpwdHQ0PDw8jIYNGxpffPGFkZqaam6bUT6akdtzvL179xqSLPKMOx0/ftyQZDz//POGYdw9D7ldWp6U2TJnzpy7Hp8mLScpVqyY4eDgYJQqVcro2rWrsXnzZot2x44dMzp16mTOn+rXr2+sWLHCok1m9yiz3w8y6mtanvP1118blSpVMpydnY06deoYmzZtsjj24sWLRv/+/Y0SJUoY7u7uRkhIiPH777+ny1nv9rvJnblmVnI4wzCMy5cvG88//7zh7+9vODo6GpUqVTLee+89i8/L7X25050x3mnKlCmGJGPDhg2ZtomIiDAkGd9//71hGIaRnJxsvPfee0ZQUJDh5ORklCxZ0ggNDTX27t17z3jS+h4SEmK4u7sbbm5uRvPmzY0dO3ZYtLlX/v/PP/8Yw4YNM4KCgowiRYoYXl5eRoMGDYxvvvkm036kyernPqM+xMfHmz8LTk5ORo0aNTL8/J8/f97o3bu34enpaXh5eRm9e/c29u/fn+Gfl2PHjhl9+vQx/Pz8DEdHR+OBBx4wnnzySePbb781t0n7vKd9Nv/66y9jwIABRoUKFQwXFxejWLFiRvPmzY3169ffs/+ALTEZxn+YQRsAYGHChAmaOHGi/v7777uOBAEAAADuFyaTScOGDbvnezEAAHmDOW4BAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgAAAAAAAABsDHPcAgAAAAAAAICNYcQtAAAAAAAAANgYCrcAAAAAAAAAYGMcrB3A/SA1NVVnzpyRh4eHTCaTtcMBAABAJgzD0OXLl+Xv7y87u8IzRoF8FQAA4P6QnXyVwm0WnDlzRmXKlLF2GAAAAMii2NhYlS5d2tph5BvyVQAAgPtLVvJVCrdZ4OHhIenfG+rp6WnlaAAAAJCZxMRElSlTxpy/FRbkqwAAAPeH7OSrFG6zIO1xM09PTxJhAACA+0Bhmy6AfBUAAOD+kpV8tfBM/AUAAAAAAAAA9wkKtwAAAAAAAABgYyjcAgAAAAAAAICNYY5bAACQb1JSUnTr1i1rh4H7nJOTk+zsGH8AAAByV2pqqm7evGntMHCfc3R0lL29fa6ci8ItAADIc4Zh6OzZs7p06ZK1Q0EBYGdnp8DAQDk5OVk7FAAAUEDcvHlTMTExSk1NtXYoKAC8vb3l5+eX4xfmUrgFAAB5Lq1o6+PjIzc3txwnMCi8UlNTdebMGcXFxals2bJ8lgAAQI4ZhqG4uDjZ29urTJkyPNmD/8wwDF27dk3nzp2TJJUqVSpH56NwCwAA8lRKSoq5aFu8eHFrh4MCoGTJkjpz5oySk5Pl6Oho7XAAAMB9Ljk5WdeuXZO/v7/c3NysHQ7uc66urpKkc+fOycfHJ0fTJvAVAgAAyFNpc9qSBCO3pE2RkJKSYuVIAABAQZCWUzANE3JL2u8+OX2/B4VbAACQL3ikHbmFzxIAAMgL5BjILbn1WaJwCwAAAAAAAAA2hsItAAAAAAAAANgYXk4GAACs4uDRE/l6veoVy/2n46KiotS4cWO1atVKK1euzNaxEyZM0LJlyxQdHf2frn39+nU98MADsrOz0+nTp+Xs7GyxPyAgQCdO/HsfXV1dVaFCBT333HN6+umnzW02b96s5s2b6+LFi/L29jave3t7Ky4uTi4uLua2u3fvVv369SX9+0bcOwUFBSkmJkYnTpyQn5/ff+oTAADA/YJ89d7IV/MWI24BAADuYtasWRoxYoS2bt2qM2fO5Ou1lyxZomrVqikoKEjLli3LsM2kSZMUFxengwcPqlevXho0aJBWr159z3N7eHho6dKlFttmzZqlsmXLZtj+p59+0vXr19WpUyfNnTs3230BAABA3iBf/VdBzFcp3AIAAGTiypUrWrRokZ599lm1adNGERER5n0RERHy9va2aL9s2TLziwgiIiI0ceJEHThwQCaTSSaTyXz8yZMn1b59e7m7u8vT01NdunRRfHx8uuvPmjVLvXr1Uq9evTRr1qwMY/Tw8JCfn5/Kly+vsWPHqlixYlq3bt09+9a3b1/Nnj3bvH79+nUtXLhQffv2zbD9rFmz1KNHD/Xu3dviOAAAAFgP+aplLAUtX6VwCwAAkIlvvvlGQUFBqly5snr16qXZs2dn+EhWRrp27aoXXnhB1apVU1xcnOLi4tS1a1elpqaqffv2unDhgrZs2aJ169bpr7/+UteuXS2OP3bsmKKiotSlSxd16dJF27ZtMz9mlpHU1FQtWbJEFy9elJOT0z3j6927t7Zt26aTJ09K+ne0REBAgB566KF0bS9fvqzFixerV69eeuKJJ5SQkKBt27Zl6T4AAAAg75Cv/qug5qsUbgEAADKRNoJAklq1aqWEhARt2bIlS8e6urrK3d1dDg4O8vPzk5+fn1xdXbVhwwb9+uuvioyMVN26ddWgQQPNmzdPW7Zs0e7du83Hz549W6GhoSpatKiKFSumkJAQzZkzJ911xo4dK3d3dzk7O6tTp04qWrSoxZxhmfHx8VFoaKh5VMXs2bM1YMCADNsuXLhQlSpVUrVq1WRvb69u3bplOqICAAAA+Yd89V8FNV+lcAsAAJCBI0eOaNeuXerevbskycHBQV27ds1xAnj48GGVKVNGZcqUMW+rWrWqvL29dfjwYUlSSkqK5s6da07CJalXr16KiIhQamqqxfnGjBmj6Ohobdy4UQ0aNNCHH36oihUrZimWAQMGKCIiQn/99ZeioqLUs2fPDNvNnj07XSyLFy/W5cuXs9xvAAAA5C7y1f8pqPmqg7UDAAAAsEWzZs1ScnKy/P39zdsMw5Czs7NmzJghOzu7dI+h3bp1K1euvWbNGp0+fTrd42gpKSnasGGDnnjiCfO2EiVKqGLFiqpYsaIWL16sGjVqqF69eqpateo9rxMaGqrBgwdr4MCBatu2rYoXL56uzW+//aadO3dq165dGjt2rEUsCxcu1KBBg3LQUwAAAPxX5Kv/Ksj5KiNuAQAA7pCcnKx58+ZpypQpio6ONi8HDhyQv7+/FixYoJIlS+ry5cu6evWq+bjo6GiL8zg5OSklJcViW5UqVRQbG6vY2Fjztt9++02XLl0yJ6+zZs1St27dLK4dHR19z0e+ypQpo65duyosLCxL/XRwcFCfPn20efPmTB87mzVrlpo0aaIDBw5YxDJ69OgC8fgZAADA/Yh89X8Kcr7KiFsA2XLwaOYTjWdV9YrlciESAMg7K1as0MWLFzVw4EB5eXlZ7OvYsaNmzZqlNWvWyM3NTa+88opGjhypn3/+2eItvpIUEBCgmJgYRUdHq3Tp0vLw8FBwcLBq1Kihnj17aurUqUpOTtbQoUPVtGlT1atXT3///bd++OEHLV++XNWrV7c4X58+fdShQwdduHBBxYoVyzD25557TtWrV9eePXtUr169e/b1jTfe0JgxYzIcvXDr1i199dVXmjRpUrpYnn76aX3wwQc6dOiQqlWrds/rAHllyar1OTq+Y+vgXIoEAID8Q776r4KerzLiFgAA4A6zZs1ScHBwuiRY+jcR3rNnj06dOqWvv/5aq1atUo0aNbRgwQJNmDAhXdtWrVqpefPmKlmypBYsWCCTyaTvv/9eRYsWVZMmTRQcHKzy5ctr0aJFkqR58+apSJEiatGiRbprt2jRQq6urvr6668zjb1q1apq2bKlxo0bl6W+Ojk5qUSJEjKZTOn2LV++XOfPn1eHDh3S7atSpYqqVKly349iAAAAuB+Rr/6roOerJuPOyS6QTmJiory8vJSQkCBPT09rhwNYFSNuAWTXjRs3FBMTo8DAQLm4uFg7HBQAd/tMFda8rbD2W2LELQAg58hXkdtyK19lxC0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAPeZZs2aadSoUdk6xmQyadmyZXkSDwAAAHA78tXc4WDtAAAAQOG0Yce+fL1ei0cf+k/HRUVFqXHjxmrVqpVWrlyZrWMnTJigZcuWKTo6OlvHRUREaNSoUbp06VKG+7/77js5Ojpm65z3snnzZjVv3lwXL16Ut7e3xb6zZ88qPDxcK1eu1KlTp+Tl5aWKFSuqV69e6tu3r9zc3CRJAQEBOnHihCTJzs5Ovr6+Cg0N1fvvv6+iRYtaXMfb21txcXFycXExX2f37t2qX7++JMkwjFztHwAAQHaRr2aOfDV/8lVG3AIAANzFrFmzNGLECG3dulVnzpyxdjiSpGLFisnDwyNfrvXXX3+pTp06Wrt2rSZPnqz9+/crKipKL730klasWKH169dbtJ80aZLi4uJ08uRJzZ8/X1u3btXIkSPTndfDw0NLly612DZr1iyVLVs2T/sDAABQ0JCvFtx8lcItAABAJq5cuaJFixbp2WefVZs2bRQREWHeFxERke6b/mXLlslkMpn3T5w4UQcOHJDJZJLJZDIff/LkSbVv317u7u7y9PRUly5dFB8fn+W47nz0LC4uTm3atJGrq6sCAwMVGRmpgIAATZ061eK4f/75Rx06dJCbm5sqVaqk5cuXS5KOHz+u5s2bS5KKFi0qk8mkfv36SZKGDh0qBwcH7dmzR126dFGVKlVUvnx5tW/fXitXrlTbtm0truHh4SE/Pz898MADat68ufr27at9+9KPVunbt69mz55tXr9+/boWLlyovn37Zvk+AAAAFHbkqwU7X6VwCwAAkIlvvvlGQUFBqly5snr16qXZs2dn+ZGorl276oUXXlC1atUUFxenuLg4de3aVampqWrfvr0uXLigLVu2aN26dfrrr7/UtWvX/xxnnz59dObMGW3evFlLlizR559/rnPnzqVrN3HiRHXp0kW//PKLWrdurZ49e+rChQsqU6aMlixZIkk6cuSI4uLiNG3aNJ0/f15r167VsGHDVKRIkQyvnZb4Z+T06dP64Ycf1KBBg3T7evfurW3btunkyZOSpCVLliggIEAPPfTfHhEEAAAojMhXC3a+SuEWAAAgE7NmzVKvXr0kSa1atVJCQoK2bNmSpWNdXV3l7u4uBwcH+fn5yc/PT66urtqwYYN+/fVXRUZGqm7dumrQoIHmzZunLVu2aPfu3dmO8ffff9f69ev1xRdfqEGDBnrooYf05Zdf6vr16+na9uvXT927d1fFihU1efJkXblyRbt27ZK9vb2KFSsmSfLx8ZGfn5+8vLx09OhRGYahypUrW5ynRIkScnd3l7u7u8aOHWuxb+zYsXJ3d5erq6tKly4tk8mkDz74IF0sPj4+Cg0NNY/qmD17tgYMGJDt/gMAABRm5KsFO1+lcAsAAJCBI0eOaNeuXerevbskycHBQV27dtWsWbNydN7Dhw+rTJkyKlOmjHlb1apV5e3trcOHD/+nOB0cHCy++a9YsaL55Qq3q1mzpvn/ixQpIk9PzwxHOtzLrl27FB0drWrVqikpKcli35gxYxQdHa1ffvlFGzZskCS1adNGKSkp6c4zYMAARURE6K+//lJUVJR69uyZ7VgAAAAKK/LVzBWUfNUhX68GAABwn5g1a5aSk5Pl7+9v3mYYhpydnTVjxgzZ2dmlewzt1q1b+R1mttz5Zl+TyaTU1NRM21esWFEmk0lHjhyx2F6+fHlJ/47SuFOJEiVUsWJFSVKlSpU0depUNWzYUJs2bVJwcLBF29DQUA0ePFgDBw5U27ZtVbx48f/ULwAAgMKIfLXg56uMuAUAALhDcnKy5s2bpylTpig6Otq8HDhwQP7+/lqwYIFKliypy5cv6+rVq+bjoqOjLc7j5OSU7pv7KlWqKDY2VrGxseZtv/32my5duqSqVatmO9bKlSsrOTlZ+/fvN287evSoLl68mK3zODk5SZJFvMWLF9cTTzyhGTNmWPQzO+zt7SUpw0fhHBwc1KdPH23evJlpEgAAALKBfPVfBT1fZcQtAADAHVasWKGLFy9q4MCB8vLystjXsWNHzZo1S2vWrJGbm5teeeUVjRw5Uj///LPFW3wlKSAgQDExMYqOjlbp0qXl4eGh4OBg1ahRQz179tTUqVOVnJysoUOHqmnTpqpXr5752JSUlHSJtbOzs6pUqWKxLSgoSMHBwRo8eLBmzpwpR0dHvfDCC3J1db3rixjuVK5cOZlMJq1YsUKtW7c2z3n2ySefqFGjRqpXr54mTJigmjVrys7OTrt379bvv/+uunXrWpzn8uXLOnv2rAzDUGxsrF566SWVLFlSjz76aIbXfeONNzRmzBhG2wIAAGQD+WrhyFcZcQsAAHCHWbNmKTg4OF0SLP2bCO/Zs0enTp3S119/rVWrVqlGjRpasGCBJkyYkK5tq1at1Lx5c5UsWVILFiyQyWTS999/r6JFi6pJkyYKDg5W+fLltWjRIotjr1y5ojp16lgsbdu2zTDeefPmydfXV02aNFGHDh00aNAgeXh4yMXFJct9fuCBBzRx4kS9/PLL8vX11fDhwyVJFSpU0P79+xUcHKywsDDVqlVL9erV0/Tp0/Xiiy/qjTfesDjPuHHjVKpUKfn7++vJJ59UkSJFtHbt2kwTXScnJ5UoUSJbSTsAAEBhR75aOPJVk3HnZBdIJzExUV5eXkpISJCnp6e1wwGs6uDREzk+R/WK5XIhEgD3ixs3bigmJkaBgYHZSszw3506dUplypTR+vXr1aJFC2uHk+vu9pkqrHlbYe23JC1ZtT5Hx3dsHXzvRgBQAOT070up4P6dSb6a/8hXs5a3MVUCAADAfW7jxo26cuWKatSoobi4OL300ksKCAhQkyZNrB0aAAAAQL76H1G4BQAAuM/dunVLr7zyiv766y95eHjo0Ucf1fz589O9lRcAAACwBvLV/4bCLQAAwH0uJCREISEh1g4DAAAAyBD56n/Dy8kAAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgAAAAAAAABsDIVbAAAAAAAAALAxFG4BAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgAAAAAAAABsjIO1AwAAAIXTklXr8/V6HVsHZ/uYfv36ae7cuQoPD9fLL79s3r5s2TJ16NBBhmFo8+bNat68uS5evChvb2+L4wMCAjRq1CiNGjXKYr127dpq3rz5Xa+9adMmPfbYY3rvvfcUERGhEydOyNXVVZUqVdKgQYP09NNPZ7s/AAAAyDryVfJVa6NwCwAAcBcuLi565513NGTIEBUtWjRXzvnoo48qLi7OvP7cc88pMTFRc+bMMW8rVqyYJk6cqM8++0wzZsxQvXr1lJiYqD179ujixYu5EgcAAADuf+SrBReFWwAAgLsIDg7W0aNHFR4ernfffTdXzunk5CQ/Pz/zuqurq5KSkiy2SdLy5cs1dOhQde7c2bytVq1auRID8s/WrVv13nvvae/evYqLi9PSpUv11FNPmfcbhqHx48friy++0KVLl9SoUSPNnDlTlSpVsl7QAADgvkG+WnAxxy0AAMBd2Nvba/LkyZo+fbpOnTqVr9f28/PTxo0b9ffff+frdZG7rl69qlq1aunjjz/OcP+7776rjz76SJ9++ql+/vlnFSlSRCEhIbpx40Y+RwoAAO5H5KsFF4VbAACAe+jQoYNq166t8ePHZ9qmdOnScnd3t1hOnjyZo+t+8MEH+vvvv+Xn56eaNWvqmWee0erVq3N0TuS/0NBQvfnmm+rQoUO6fYZhaOrUqXrttdfUvn171axZU/PmzdOZM2e0bNmy/A8WAADcl8hXCyYKtwAAAFnwzjvvaO7cuTp8+HCG+7dt26bo6GiLxd/fP0fXrFq1qg4ePKidO3dqwIABOnfunNq2bcuLHgqQmJgYnT17VsHB/3sZiZeXlxo0aKCoqKhMj0tKSlJiYqLFAgAACjfy1YKHwi0AAEAWNGnSRCEhIQoLC8twf2BgoCpWrGixODjk/HUCdnZ2evjhhzVq1Ch99913ioiI0KxZsxQTE5Pjc8P6zp49K0ny9fW12O7r62vel5Hw8HB5eXmZlzJlyuRpnAAAwPaRrxY8vJwMAAAgi95++23Vrl1blStXtloMVatWlfTvvKkovMLCwjR69GjzemJiIsVbAABAvlrAULgFAADIoho1aqhnz5766KOP8uV6nTp1UqNGjfToo4/Kz89PMTExCgsL04MPPqigoKB8iQF5K+3NzPHx8SpVqpR5e3x8vGrXrp3pcc7OznJ2ds7r8AAAwH2GfLVgYaoEAACAbJg0aZJSU1Pz5VohISH64Ycf1LZtWz344IPq27evgoKCtHbt2lx5rA3WFxgYKD8/P23YsMG8LTExUT///LMaNmxoxcgAAMD9iny14DAZhmFYOwhbl5iYKC8vLyUkJMjT09Pa4QBWdfDoiRyfo3rFcrkQCYD7xY0bNxQTE6PAwEC5uLhYOxwUAHf7TNli3nblyhUdPXpUklSnTh198MEHat68uYoVK6ayZcvqnXfe0dtvv625c+cqMDBQr7/+un755Rf99ttvWf4zY4v9zi9LVq3P0fEdWwffuxEAFAA5/ftSKrh/Z5KvIrflVr5K6RsAAADIQ3v27FHz5s3N62lz0/bt21cRERF66aWXdPXqVQ0ePFiXLl1S48aN9eOPP/KLIwAAQCFH4RYAAADIQ82aNdPdHnIzmUyaNGmSJk2alI9RAQAAwNYxxy0AAAAAAAAA2BgKtwAAAAAAAABgY5gqAQAAAAAAIA/xkmcA/wUjbgEAAAAAAADAxlC4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEUbgEAAP6Dfv366amnnrJ2GAAAAECGyFfvfw7WDgAAABROt8Kn5uv1HMNGZbmtyWS66/7x48dr2rRpMgwjh1FlzdmzZxUeHq6VK1fq1KlT8vLyUsWKFdWrVy/17dtXbm5ukqSAgACdOPHvW6vd3NxUuXJlhYWFqXPnzhb7MtK3b19FRETkR3cAAADuC+SrWUe+mjco3AIAANwhLi7O/P+LFi3SuHHjdOTIEfM2d3d3ubu750ssf/31lxo1aiRvb29NnjxZNWrUkLOzs3799Vd9/vnneuCBB9SuXTtz+0mTJmnQoEFKTEzUlClT1LVrVz3wwAPavXu3UlJSJEk7duxQx44ddeTIEXl6ekqSXF1d86U/AAAAyDny1cKBqRIAAADu4OfnZ168vLxkMpkstrm7u6d79KxZs2YaMWKERo0apaJFi8rX11dffPGFrl69qv79+8vDw0MVK1bU6tWrLa518OBBhYaGyt3dXb6+vurdu7f++ecf8/6hQ4fKwcFBe/bsUZcuXVSlShWVL19e7du318qVK9W2bVuL83l4eMjPz08PPvigPv74Y7m6uuqHH35QyZIlzfEXK1ZMkuTj42PRTwAAANwfyFcLB6sWbsPDw/Xwww/Lw8NDPj4+euqppyy+HZCkGzduaNiwYSpevLjc3d3VsWNHxcfHW7Q5efKk2rRpIzc3N/n4+GjMmDFKTk62aLN582Y99NBDcnZ2VsWKFQvd0GoAAJD35s6dqxIlSmjXrl0aMWKEnn32WXXu3FmPPvqo9u3bp5YtW6p37966du2aJOnSpUt6/PHHVadOHe3Zs0c//vij4uPj1aVLF0nS+fPntXbtWg0bNkxFihTJ8Jp3e0zOwcFBjo6OunnzZu53FgAAAPcd8tX7i1ULt1u2bNGwYcO0c+dOrVu3Trdu3VLLli119epVc5vnn39eP/zwgxYvXqwtW7bozJkz+r//+z/z/pSUFLVp00Y3b97Ujh07NHfuXEVERGjcuHHmNjExMWrTpo2aN2+u6OhojRo1Sk8//bTWrFmTr/0FAAAFW61atfTaa6+pUqVKCgsLk4uLi0qUKKFBgwapUqVKGjdunM6fP69ffvlFkjRjxgzVqVNHkydPVlBQkOrUqaPZs2dr06ZN+uOPP3T06FEZhqHKlStbXKdEiRLmx9/Gjh2bYSw3b95UeHi4EhIS9Pjjj+d53wEAAGD7yFfvL1ad4/bHH3+0WI+IiJCPj4/27t2rJk2aKCEhQbNmzVJkZKT5BzhnzhxVqVJFO3fu1COPPKK1a9fqt99+0/r16+Xr66vatWvrjTfe0NixYzVhwgQ5OTnp008/VWBgoKZMmSJJqlKlin766Sd9+OGHCgkJyfd+AwCAgqlmzZrm/7e3t1fx4sVVo0YN8zZfX19J0rlz5yRJBw4c0KZNmzKcf+zYsWPmR8TutGvXLqWmpqpnz55KSkqy2Dd27Fi99tprunHjhtzd3fX222+rTZs2Oe4bAAAA7n/kq/cXm3o5WUJCgiSZf+h79+7VrVu3FBwcbG4TFBSksmXLKioqSo888oiioqJUo0YN8wdLkkJCQvTss8/q0KFDqlOnjqKioizOkdZm1KhRGcaRlJRk8aFKTEzMrS4CAIACzNHR0WLdZDJZbEt7TCw1NVWSdOXKFbVt21bvvPNOunOVKlVKN27ckMlkSjeVVPny5SVl/IKGMWPGqF+/fuY5yO71xmEAAAAUHuSr9xebKdympqZq1KhRatSokapXry5JOnv2rJycnOTt7W3R1tfXV2fPnjW3ub1om7Y/bd/d2iQmJur69evpPkTh4eGaOHFirvUNAAAgIw899JCWLFmigIAAOTikT8uKFCmiJ554QjNmzNCIESMynTfsdiVKlFDFihXzIlwAAAAUMuSr1mXVOW5vN2zYMB08eFALFy60digKCwtTQkKCeYmNjbV2SAAAoAAaNmyYLly4oO7du2v37t06duyY1qxZo/79+yslJUWS9Mknnyg5OVn16tXTokWLdPjwYR05ckRff/21fv/9d9nb21u5FwAAACioyFetyyZG3A4fPlwrVqzQ1q1bVbp0afN2Pz8/3bx5U5cuXbIYdRsfHy8/Pz9zm127dlmcLz4+3rwv7b9p225v4+npmeGQbWdnZzk7O+dK3wAAADLj7++v7du3a+zYsWrZsqWSkpJUrlw5tWrVSnZ2/36/XqFCBe3fv1+TJ09WWFiYTp06JWdnZ1WtWlUvvviihg4dauVeAAAAoKAiX7Uuk2EYhrUubhiGRowYoaVLl2rz5s2qVKmSxf6EhASVLFlSCxYsUMeOHSVJR44cUVBQkHmO29WrV+vJJ59UXFycfHx8JEmff/65xowZo3PnzsnZ2Vljx47VqlWr9Ouvv5rP3aNHD124cCHdC9IykpiYKC8vLyUkJMjT0zMX7wBw/zl49ESOz1G9YrlciATA/eLGjRuKiYlRYGCgXFxcrB0OCoC7faYKa95WWPstSUtWrc/R8R1bB9+7EQDkkC38HpXTvy+lgvt3Jvkqcltu5atWHXE7bNgwRUZG6vvvv5eHh4d5TlovLy+5urrKy8tLAwcO1OjRo1WsWDF5enpqxIgRatiwoR555BFJUsuWLVW1alX17t1b7777rs6ePavXXntNw4YNM4+afeaZZzRjxgy99NJLGjBggDZu3KhvvvlGK1eutFrfAQAAAAAAACAzVp3jdubMmUpISFCzZs1UqlQp87Jo0SJzmw8//FBPPvmkOnbsqCZNmsjPz0/fffedeb+9vb1WrFghe3t7NWzYUL169VKfPn00adIkc5vAwECtXLlS69atU61atTRlyhR9+eWXCgkJydf+AgAAAAAAAEBWWHXEbVZmaXBxcdHHH3+sjz/+ONM25cqV06pVq+56nmbNmmn//v3ZjhEAAABAerbw2C8AAEBBZtURtwAAAAAAAACA9Kw64hYAABQeVnwfKgoYPkvITbfCp+b4HI5ho3J8DgCA9ZFjILfk1meJEbcAACBPOTo6SpKuXbtm5UhQUNy8eVPSv+86AAAAyKm0nCItxwByKu13n7Tfhf4rRtwCAIA8ZW9vL29vb507d06S5ObmJpPJZOWocL9KTU3V33//LTc3Nzk4kMoCAICcc3BwkJubm/7++285OjrKzo5xjvhvDMPQtWvXdO7cOXl7e+d4oAHZLgAAyHN+fn6SZC7eAjlhZ2ensmXL8gUAAADIFSaTSaVKlVJMTIxOnMj5yzcBb29v8+9AOUHhFgAA5Lm0ZNjHx0e3bt2ydji4zzk5OTESBgAA5ConJydVqlSJ6RKQY46Ojrk2pReFWwD5bsOOfTk6vsWjD+VSJADym729PfOSAgAAwCbZ2dnJxcXF2mEAZgxVAAAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEUbgEAAAAAAADAxlC4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEUbgEAAAAAAADAxlC4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEO1g4AAAAAQOG0Ycc+a4cAAABgsxhxCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAACAlaWkpOj1119XYGCgXF1dVaFCBb3xxhsyDMPaoQEAAMBKHKwdAAAAAFDYvfPOO5o5c6bmzp2ratWqac+ePerfv7+8vLw0cuRIa4cHAAAAK6BwCwAAAFjZjh071L59e7Vp00aSFBAQoAULFmjXrl1WjgwAAADWwlQJAAAAgJU9+uij2rBhg/744w9J0oEDB/TTTz8pNDTUypEBAADAWhhxCwAAAFjZyy+/rMTERAUFBcne3l4pKSl666231LNnzwzbJyUlKSkpybyemJiYX6ECAAAgnzDiFgAAALCyb775RvPnz1dkZKT27dunuXPn6v3339fcuXMzbB8eHi4vLy/zUqZMmXyOGAAAAHmNwi0AAABgZWPGjNHLL7+sbt26qUaNGurdu7eef/55hYeHZ9g+LCxMCQkJ5iU2NjafIwYAAEBeY6oEAAAAwMquXbsmOzvLMRX29vZKTU3NsL2zs7OcnZ3zIzQAAABYCYVbAAAAwMratm2rt956S2XLllW1atW0f/9+ffDBBxowYIC1QwMAwOxW+NQcHe8YNipX4gAKCwq3AAAAgJVNnz5dr7/+uoYOHapz587J399fQ4YM0bhx46wdGgAAAKyEwi0AAABgZR4eHpo6daqmTp1q7VAAAABgI3g5GQAAAAAAAADYGAq3AAAAAAAAAGBjKNwCAAAAAAAAgI1hjlsAAAAAAAAbt2HHPmuHACCfMeIWAAAAAAAAAGwMhVsAAAAAAAAAsDEUbgEAAAAAAADAxlC4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEUbgEAAAAAAADAxlC4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEUbgEAAAAAAADAxlC4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMhVsAAAAAAAAAsDEO1g4AALJryar1OT5Hx9bBuRAJAAAAAABA3mDELQAAAAAAAADYGAq3AAAAAAAAAGBjKNwCAAAAAAAAgI2hcAsAAAAAAAAANobCLQAAAAAAAADYGAq3AAAAAAAAAGBjrFq43bp1q9q2bSt/f3+ZTCYtW7bMYn+/fv1kMpksllatWlm0uXDhgnr27ClPT095e3tr4MCBunLlikWbX375RY899phcXFxUpkwZvfvuu3ndNQAAAAAAAAD4z6xauL169apq1aqljz/+ONM2rVq1UlxcnHlZsGCBxf6ePXvq0KFDWrdunVasWKGtW7dq8ODB5v2JiYlq2bKlypUrp7179+q9997ThAkT9Pnnn+dZvwAAAAAAAAAgJxysefHQ0FCFhobetY2zs7P8/Pwy3Hf48GH9+OOP2r17t+rVqydJmj59ulq3bq33339f/v7+mj9/vm7evKnZs2fLyclJ1apVU3R0tD744AOLAi8AAAAAAAAA2Aqbn+N28+bN8vHxUeXKlfXss8/q/Pnz5n1RUVHy9vY2F20lKTg4WHZ2dvr555/NbZo0aSInJydzm5CQEB05ckQXL17Mv44AAAAAAAAAQBZZdcTtvbRq1Ur/93//p8DAQB07dkyvvPKKQkNDFRUVJXt7e509e1Y+Pj4Wxzg4OKhYsWI6e/asJOns2bMKDAy0aOPr62veV7Ro0XTXTUpKUlJSknk9MTExt7sGAAAAAAAAAJmy6cJtt27dzP9fo0YN1axZUxUqVNDmzZvVokWLPLtueHi4Jk6cmGfnBwAAAAAAAIC7sfmpEm5Xvnx5lShRQkePHpUk+fn56dy5cxZtkpOTdeHCBfO8uH5+foqPj7dok7ae2dy5YWFhSkhIMC+xsbG53RUAAAAAAAAAyNR9Vbg9deqUzp8/r1KlSkmSGjZsqEuXLmnv3r3mNhs3blRqaqoaNGhgbrN161bdunXL3GbdunWqXLlyhtMkSP++EM3T09NiAQAAAAAAAID8YtXC7ZUrVxQdHa3o6GhJUkxMjKKjo3Xy5ElduXJFY8aM0c6dO3X8+HFt2LBB7du3V8WKFRUSEiJJqlKlilq1aqVBgwZp165d2r59u4YPH65u3brJ399fktSjRw85OTlp4MCBOnTokBYtWqRp06Zp9OjR1uo2AAAAAAAAANyVVQu3e/bsUZ06dVSnTh1J0ujRo1WnTh2NGzdO9vb2+uWXX9SuXTs9+OCDGjhwoOrWratt27bJ2dnZfI758+crKChILVq0UOvWrdW4cWN9/vnn5v1eXl5au3atYmJiVLduXb3wwgsaN26cBg8enO/9BQAAAAAAAICssOrLyZo1aybDMDLdv2bNmnueo1ixYoqMjLxrm5o1a2rbtm3Zjg8AAAAAAAAArOG+muMWAAAAAAAAAAoDCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYB2sHAAAAAADImQ079uX4HC0efSgXIgEAALmFwi2AQulW+NQcHe8YNipX4gAAAAAAAMgIUyUAAAAAAAAAgI2hcAsAAAAAAAAANobCLQAAAAAAAADYGAq3AAAAAAAAAGBjKNwCAAAAAAAAgI2hcAsAAAAAAAAANobCLQAAAAAAAADYGAq3AAAAAAAAAGBjKNwCAAAAAAAAgI2hcAsAAAAAAAAANobCLQAAAAAAAADYGAq3AAAAAAAAAGBjKNwCAAAAAAAAgI2hcAsAAAAAAAAANobCLQAAAAAAAADYGAq3AAAAAAAAAGBjKNwCAAAAt/nmm2908+ZN8/qpU6eUmppqXr927Zreffdda4QGAACAQoTCLQAAAHCb7t2769KlS+b1qlWr6vjx4+b1y5cvKywsLP8DAwAAQKFC4RYAAAC4jWEYd10HAAAA8gOFWwAAAAAAAACwMRRuAQAAAAAAAMDGOGSn8blz5+Tj45Pp/uTkZO3bt0/169fPcWAAAACAtaxZs0ZeXl6SpNTUVG3YsEEHDx6UJIv5bwEAAIC8kq3CbalSpRQXF2cu3taoUUOrVq1SmTJlJEnnz59Xw4YNlZKSkvuRAgAAAPmkb9++FutDhgyxWDeZTPkZDgAAAAqhbBVu73wxw/Hjx3Xr1q27tgEAAADuJ6mpqdYOAQAAAMj9OW4ZfQAAAICCICkpSVevXrV2GAAAACikeDkZAAAAcJu///5boaGhcnd3l6enpx555BEdPXo0z697+vRp9erVS8WLF5erq6tq1KihPXv25Pl1AQAAYJuyNVWCyWTS5cuX5eLiIsMwZDKZdOXKFSUmJkqS+b8AAADA/Wrs2LGKjo7WpEmT5OLios8++0yDBg3Spk2b8uyaFy9eVKNGjdS8eXOtXr1aJUuW1J9//qmiRYvm2TUBAABg27I9x+2DDz5osV6nTh2LdaZKAAAAwP1s3bp1ioiIUEhIiCTpySefVJUqVZSUlCRnZ+c8ueY777yjMmXKaM6cOeZtgYGBeXItAAAA3B+yVbjNy1EGAAAAgC04c+aMatWqZV6vVKmSnJ2dFRcXp4CAgDy55vLlyxUSEqLOnTtry5YteuCBBzR06FANGjQow/ZJSUlKSkoyr/PkGwAAQMGTrcJt06ZN8yoOAAAAwGbY29unWzcMI8+u99dff2nmzJkaPXq0XnnlFe3evVsjR46Uk5OT+vbtm659eHi4Jk6cmGfxAAAAwPqyVbhNTk5WSkqKxSNi8fHx+vTTT3X16lW1a9dOjRs3zvUgAQAAgPySNj3Y7VOAXblyRXXq1JGd3f/e7XvhwoVcu2Zqaqrq1aunyZMnS5Lq1KmjgwcP6tNPP82wcBsWFqbRo0eb1xMTE1WmTJlciwcAAADWl63C7aBBg+Tk5KTPPvtMknT58mU9/PDDunHjhkqVKqUPP/xQ33//vVq3bp0nwQIAAAB57fZ5ZvNLqVKlVLVqVYttVapU0ZIlSzJs7+zsnGfz7QIAAMA2ZKtwu337ds2YMcO8Pm/ePKWkpOjPP/+Ul5eXxo4dq/fee4/CLQAAAO5bGY1wvVNKSkquXrNRo0Y6cuSIxbY//vhD5cqVy9XrAAAA4P5hd+8m/3P69GlVqlTJvL5hwwZ17NhRXl5ekv5Ncg8dOpS7EQIAAAA24o8//tDYsWNVunTpXD3v888/r507d2ry5Mk6evSoIiMj9fnnn2vYsGG5eh0AAADcP7JVuHVxcdH169fN6zt37lSDBg0s9l+5ciX3ogMAAACs7Nq1a5ozZ44ee+wxVa1aVVu2bLGYXzY3PPzww1q6dKkWLFig6tWr64033tDUqVPVs2fPXL0OAAAA7h/Zmiqhdu3a+uqrrxQeHq5t27YpPj5ejz/+uHn/sWPH5O/vn+tBAgAAAPlt586d+vLLL7V48WKVLVtWhw8f1qZNm/TYY4/lyfWefPJJPfnkk3lybgAAANx/sjXidty4cZo2bZoqVKigkJAQ9evXT6VKlTLvX7p0qRo1apTrQQIAAAD5ZcqUKapWrZo6deqkokWLauvWrfr1119lMplUvHhxa4cHAACAQiJbI26bNm2qvXv3au3atfLz81Pnzp0t9teuXVv169fP1QABAACA/DR27FiNHTtWkyZNkr29vbXDAQAAQCGVrcKtJFWpUkVVqlTJcN/gwYNzHBAAAABgTW+88YbmzJmjr776St27d1fv3r1VvXp1a4cFAACAQiZbhdutW7dmqV2TJk3+UzAAAACAtYWFhSksLExbtmzR7Nmz1aBBA1WsWFGGYejixYvWDg8AAACFRLYKt82aNZPJZJIkGYaRYRuTyaSUlJScRwYAAABYUdOmTdW0aVPNmDFDkZGRmj17tpo2bar69eurU6dOGj16tLVDBAAAQAGWrZeTFS1aVGXKlNHrr7+uP//8UxcvXky3XLhwIa9iBQAAAPKdh4eHhgwZop9//ln79+9X/fr19fbbb1s7LAAAABRw2SrcxsXF6Z133lFUVJRq1KihgQMHaseOHfL09JSXl5d5AQAAAAqiGjVqaOrUqTp9+rS1QwEAAEABl62pEpycnNS1a1d17dpVJ0+eVEREhIYPH66kpCT17dtXEydOlINDtt93BgAAANiMefPm3bONyWRS79698yEaAAAAFFb/ucpatmxZjRs3Tr1799bAgQP19ttv64UXXlCxYsVyMz4AAAAgX/Xr10/u7u5ycHC463sdKNwClm6FT83xORzDRuX4HAAAFBTZmiohTVJSkiIjIxUcHKzq1aurRIkSWrlyJUVbAAAA3PeqVKkiJycn9enTR1u2bOG9DgAAALCKbBVud+3apWeffVZ+fn5677331K5dO8XGxuqbb75Rq1at8ipGAAAAIN8cOnRIK1eu1PXr19WkSRPVq1dPM2fOVGJiorVDAwAAQCGSrakSHnnkEZUtW1YjR45U3bp1JUk//fRTunbt2rXLnegAAAAAK2jQoIEaNGigqVOnavHixZozZ45efPFFPfXUU5o9e7acnZ2tHSIAAAAKuGzPcXvy5Em98cYbme43mUxKSUnJUVAAAACALXB1dVWfPn0UEBCg8ePHa+HChZoxYwaFWwAAAOS5bE2VkJqaes/l8uXLeRUrAAAAkG9Onz6tyZMnq1KlSurWrZsefvhhHTp0SEWLFrV2aAAAACgE/tPLyTKSlJSkDz74QOXLl8+tUwIAAAD57ptvvlFoaKgqVaqk3bt3a8qUKYqNjdW7776roKAga4cHAACAQiJbUyUkJSVpwoQJWrdunZycnPTSSy+Z5/l67bXXZG9vr+effz6vYgUAAADyXLdu3VS2bFk9//zz8vX11fHjx/Xxxx+nazdy5EgrRAcAAIDCIluF23Hjxumzzz5TcHCwduzYoc6dO6t///7auXOnPvjgA3Xu3Fn29vZ5FSsAAACQ58qWLSuTyaTIyMhM25hMJgq3AAAAyFPZKtwuXrxY8+bNU7t27XTw4EHVrFlTycnJOnDggEwmU17FCAAAAOSb48ePWzsEFEIHj56wdggAAMDGZGuO21OnTqlu3bqSpOrVq8vZ2VnPP/88RVsAAAAUGFFRUVqxYoXFtnnz5ikwMFA+Pj4aPHiwkpKSrBQdAAAACotsFW5TUlLk5ORkXndwcJC7u3uuBwUAAABYy8SJE3Xo0CHz+q+//qqBAwcqODhYL7/8sn744QeFh4dbMUIAAAAUBtmaKsEwDPXr10/Ozs6SpBs3buiZZ55RkSJFLNp99913uRchAAAAkI8OHDigN99807y+cOFCNWjQQF988YUkqUyZMho/frwmTJhgpQgBAABQGGSrcNu3b1+L9V69euVqMAAAAIC1Xbx4Ub6+vub1LVu2KDQ01Lz+8MMPKzY21hqhAQAAoBDJVuF2zpw5eRUHAAAAYBN8fX0VExOjMmXK6ObNm9q3b58mTpxo3n/58mU5OjpaMUIAAAAUBtma4xYAAAAo6Fq3bq2XX35Z27ZtU1hYmNzc3PTYY4+Z9//yyy+qUKGCFSMEAABAYZCtEbcAAABAQffGG2/o//7v/9S0aVO5u7tr7ty5Fi/onT17tlq2bGnFCAEAAFAYULgFAAAAblOiRAlt3bpVCQkJcnd3l729vcX+xYsXy93d3UrRAQAAoLCgcAsAAABkwMvLK8PtxYoVy+dIAAAAUBgxxy0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGl5MBAAAAAAqMg0dP5Oj46hXL5VIkAADkDCNuAQAAAAAAAMDGULgFAAAAAAAAABtD4RYAAAAAAAAAbAyFWwAAAAAAAACwMRRuAQAAAAAAAMDGULgFAAAAAAAAABtD4RYAAAAAAAAAbIxVC7dbt25V27Zt5e/vL5PJpGXLllnsNwxD48aNU6lSpeTq6qrg4GD9+eefFm0uXLignj17ytPTU97e3ho4cKCuXLli0eaXX37RY489JhcXF5UpU0bvvvtuXncNAAAAAAAAAP4zB2te/OrVq6pVq5YGDBig//u//0u3/91339VHH32kuXPnKjAwUK+//rpCQkL022+/ycXFRZLUs2dPxcXFad26dbp165b69++vwYMHKzIyUpKUmJioli1bKjg4WJ9++ql+/fVXDRgwQN7e3ho8eHC+9hf3rw079uX4HC0efSgXIgEAAAAAAEBhYNXCbWhoqEJDQzPcZxiGpk6dqtdee03t27eXJM2bN0++vr5atmyZunXrpsOHD+vHH3/U7t27Va9ePUnS9OnT1bp1a73//vvy9/fX/PnzdfPmTc2ePVtOTk6qVq2aoqOj9cEHH1C4BQAAAAAAAGCTbHaO25iYGJ09e1bBwcHmbV5eXmrQoIGioqIkSVFRUfL29jYXbSUpODhYdnZ2+vnnn81tmjRpIicnJ3ObkJAQHTlyRBcvXszw2klJSUpMTLRYAAAAAAAAACC/2Gzh9uzZs5IkX19fi+2+vr7mfWfPnpWPj4/FfgcHBxUrVsyiTUbnuP0adwoPD5eXl5d5KVOmTM47BAAAAAAAAABZZLOFW2sKCwtTQkKCeYmNjbV2SAAAAAAAAAAKEZst3Pr5+UmS4uPjLbbHx8eb9/n5+encuXMW+5OTk3XhwgWLNhmd4/Zr3MnZ2Vmenp4WCwAAAAAAAADkF5st3AYGBsrPz08bNmwwb0tMTNTPP/+shg0bSpIaNmyoS5cuae/eveY2GzduVGpqqho0aGBus3XrVt26dcvcZt26dapcubKKFi2aT70BAAAAAAAAgKyzauH2ypUrio6OVnR0tKR/X0gWHR2tkydPymQyadSoUXrzzTe1fPly/frrr+rTp4/8/f311FNPSZKqVKmiVq1aadCgQdq1a5e2b9+u4cOHq1u3bvL395ck9ejRQ05OTho4cKAOHTqkRYsWadq0aRo9erSVeg0AAAAAAAAAd+dgzYvv2bNHzZs3N6+nFVP79u2riIgIvfTSS7p69aoGDx6sS5cuqXHjxvrxxx/l4uJiPmb+/PkaPny4WrRoITs7O3Xs2FEfffSReb+Xl5fWrl2rYcOGqW7duipRooTGjRunwYMH519HAQAAAAAAACAbrFq4bdasmQzDyHS/yWTSpEmTNGnSpEzbFCtWTJGRkXe9Ts2aNbVt27b/HCcAAAAAAAAA5CebneMWAAAAAAAAAAorCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAACADXn77bdlMpk0atQoa4cCAAAAK6JwCwAAANiI3bt367PPPlPNmjWtHQoAAACsjMItAAAAYAOuXLminj176osvvlDRokWtHQ4AAACsjMItAAAAYAOGDRumNm3aKDg42NqhAAAAwAY4WDsAAAAAoLBbuHCh9u3bp927d2epfVJSkpKSkszriYmJeRUaAAAArIQRtwAAAIAVxcbG6rnnntP8+fPl4uKSpWPCw8Pl5eVlXsqUKZPHUQIAACC/UbgFAAAArGjv3r06d+6cHnroITk4OMjBwUFbtmzRRx99JAcHB6WkpKQ7JiwsTAkJCeYlNjbWCpEDAAAgLzFVAgAAAGBFLVq00K+//mqxrX///goKCtLYsWNlb2+f7hhnZ2c5OzvnV4gAAACwAgq3AAAAgBV5eHioevXqFtuKFCmi4sWLp9sOAACAwoOpEgAAAAAAAADAxjDiFgAAALAxmzdvtnYIAAAAsDIKtwAAAAAA/H8bduzL8TlaPPpQLkQCACjsKNyiUDh49IS1QwAAAAAAAACyjDluAQAAAAAAAMDGULgFAAAAAAAAABvDVAnAfeRW+NQcHe8YNipX4gAAAAAAAMipJavW5/gcHVsH50IktokRtwAAAAAAAABgYyjcAgAAAAAAAICNYaoE3BVD1gEAAAAAAID8R+EWAAAAAAAAKGQOHj2R43NUr1guFyJBZpgqAQAAAAAAAABsDIVbAAAAAAAAALAxFG4BAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgAAAAAAAABsjIO1AwAAALjTklXrc3R8x9bBuRQJAAAAAFgHI24BAAAAAAAAwMZQuAUAAAAAAAAAG0PhFgAAAAAAAABsDIVbAAAAAAAAALAxFG4BAAAAAAAAwMY4WDsAFHy3wqfm6HjHsFG5EgcAoPDI6b89Ev/+AAAAALAuRtwCAAAAAAAAgI2hcAsAAAAAAAAANoapEmzYwaMncnR89YrlcikSAAAAAAXdklXrc3R8u1yKAwBsXU7/vpSkjq2DcyESFHQUbgEAgFlOvzSU+OIQAAAAAHIDhdsCbMOOfdYOAQBQCPHvDwAAAFA4kPvnLea4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMUyUAAAAAAAAAuC/dCp+a43M4ho3K8TnyAiNuAQAAAAAAAMDGMOIWAAAAAIBctGTV+hyfo2Pr4FyIBABwP2PELQAAAAAAAADYGEbcAgAAAAAAoNDYsGOftUMAsoQRtwAAAAAAAABgYyjcAgAAAAAAAICNYaoEAAAAAABQYN0Kn5qj4x3DRuVKHACQXYy4BQAAAAAAAAAbQ+EWAAAAAAAAAGwMUyUAAAAAAAAA+SinU3hITONRGDDiFgAAAAAAAABsDCNuAQAAAACwMbxQC8jYwaMnrB0CkG8o3AL5ZMmq9Tk+R7tciAMAAAAAAAC2j6kSAAAAAAAAAMDGULgFAAAAAAAAABtD4RYAAAAAAAAAbAyFWwAAAAAAAACwMRRuAQAAAAAAAMDGOFg7AAAAAAAAgIwsWbU+x+dolwtxAIA1MOIWAAAAAAAAAGwMhVsAAAAAAAAAsDFMlQAAAAAAANI5ePREjo6PP3c+lyIBgMKJEbcAAAAAAAAAYGMo3AIAAAAAAACAjbHpwu2ECRNkMpkslqCgIPP+GzduaNiwYSpevLjc3d3VsWNHxcfHW5zj5MmTatOmjdzc3OTj46MxY8YoOTk5v7sCAAAAAAAAAFlm83PcVqtWTevXrzevOzj8L+Tnn39eK1eu1OLFi+Xl5aXhw4fr//7v/7R9+3ZJUkpKitq0aSM/Pz/t2LFDcXFx6tOnjxwdHTV58uR87wsAAAAAAAAAZIXNF24dHBzk5+eXbntCQoJmzZqlyMhIPf7445KkOXPmqEqVKtq5c6ceeeQRrV27Vr/99pvWr18vX19f1a5dW2+88YbGjh2rCRMmyMnJKb+7AwAAAAAAAAD3ZNNTJUjSn3/+KX9/f5UvX149e/bUyZMnJUl79+7VrVu3FBwcbG4bFBSksmXLKioqSpIUFRWlGjVqyNfX19wmJCREiYmJOnToUP52BAAAAAAAAACyyKZH3DZo0EARERGqXLmy4uLiNHHiRD322GM6ePCgzp49KycnJ3l7e1sc4+vrq7Nnz0qSzp49a1G0Tdufti8zSUlJSkpKMq8nJibmUo8AAAAAAAAA4N5sunAbGhpq/v+aNWuqQYMGKleunL755hu5urrm2XXDw8M1ceLEPDs/AAAAAAAAANyNzU+VcDtvb289+OCDOnr0qPz8/HTz5k1dunTJok18fLx5Tlw/Pz/Fx8en25+2LzNhYWFKSEgwL7GxsbnbEQAAAAAAAAC4i/uqcHvlyhUdO3ZMpUqVUt26deXo6KgNGzaY9x85ckQnT55Uw4YNJUkNGzbUr7/+qnPnzpnbrFu3Tp6enqpatWqm13F2dpanp6fFAgAAAAAAAAD5xaanSnjxxRfVtm1blStXTmfOnNH48eNlb2+v7t27y8vLSwMHDtTo0aNVrFgxeXp6asSIEWrYsKEeeeQRSVLLli1VtWpV9e7dW++++67Onj2r1157TcOGDZOzs7OVewcAAAAAAAAAGbPpwu2pU6fUvXt3nT9/XiVLllTjxo21c+dOlSxZUpL04Ycfys7OTh07dlRSUpJCQkL0ySefmI+3t7fXihUr9Oyzz6phw4YqUqSI+vbtq0mTJlmrSwAAAAAAAABwTzZduF24cOFd97u4uOjjjz/Wxx9/nGmbcuXKadWqVbkdGgAAAAAAAADkmftqjlsAAAAAAAAAKAwo3AIAAAAAAACAjaFwCwAAAAAAAAA2hsItAAAAAAAAANgYCrcAAACAlYWHh+vhhx+Wh4eHfHx89NRTT+nIkSPWDgsAAABWROEWAAAAsLItW7Zo2LBh2rlzp9atW6dbt26pZcuWunr1qrVDAwAAgJU4WDsAAAAAoLD78ccfLdYjIiLk4+OjvXv3qkmTJlaKCgAAANZE4RYAAACwMQkJCZKkYsWKZbg/KSlJSUlJ5vXExMR8iQsAAAD5h6kSAAAAABuSmpqqUaNGqVGjRqpevXqGbcLDw+Xl5WVeypQpk89RAgAAIK9RuAUAAABsyLBhw3Tw4EEtXLgw0zZhYWFKSEgwL7GxsfkYIQAAAPIDUyUAAAAANmL48OFasWKFtm7dqtKlS2faztnZWc7OzvkYGQAAAPIbhVsAAADAygzD0IgRI7R06VJt3rxZgYGB1g4JAAAAVkbhFgAAALCyYcOGKTIyUt9//708PDx09uxZSZKXl5dcXV2tHB0AAACsgTluAQAAACubOXOmEhIS1KxZM5UqVcq8LFq0yNqhAQAAwEoYcQsAAABYmWEY1g4BAAAANoYRtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYxysHQAAFFYHj57I8TmqVyyXC5HkzK3wqTk+h2PYqByfAwAAAACAgoTCLQDcxzbs2Jej4y9dupDjGNrl+AwAAAAAAOBOTJUAAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADbGwdoBAAAAIO8sWbU+R8d3bB2cS5EAAAAAyA5G3AIAAAAAAACAjWHELQAAQB44ePREjs9RvWK5XIgEAAAAwP2IEbcAAAAAAAAAYGMo3AIAAAAAAACAjaFwCwAAAAAAAAA2hjluAQAAbNSGHfusHYJuhU/N8Tkcw0bl+BwAAABAYcOIWwAAAAAAAACwMRRuAQAAAAAAAMDGULgFAAAAAAAAABtD4RYAAAAAAAAAbAyFWwAAAAAAAACwMRRuAQAAAAAAAMDGULgFAAAAAAAAABtD4RYAAAAAAAAAbAyFWwAAAAAAAACwMQ7WDgAAgJw6ePREjs9RvWK5HB2/ZNX6HMfQsXVwjs8BAAAAACgYGHELAAAAAAAAADaGwi0AAAAAAAAA2BimSgAAQNKGHfusHYJuhU/N8Tkcw0bl+BwAAAAAAOtjxC0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNoXALAAAAAAAAADaGwi0AAAAAAAAA2BgKtwAAAAAAAABgYyjcAgAAAAAAAICNKVSF248//lgBAQFycXFRgwYNtGvXLmuHBAAAAJiRrwIAACBNoSncLlq0SKNHj9b48eO1b98+1apVSyEhITp37py1QwMAAADIVwEAAGCh0BRuP/jgAw0aNEj9+/dX1apV9emnn8rNzU2zZ8+2dmgAAAAA+SoAAAAsOFg7gPxw8+ZN7d27V2FhYeZtdnZ2Cg4OVlRUVLr2SUlJSkpKMq8nJCRIkhITE/M+2NtcuXw5R8dfvXolxzFcu3Y1x+dIvHEjR8c75sJ9517+yxbupZTz+8m9/J+CcC+lnN9P7uX/FIR7KeX8fnIv/6cg3MvsSMvXDMPIt2vmhvsxX+Uz/j+2kBdwL/+nINxLqWDkq9zL/7GFvzO5l/9TEO6lVDDy1YJyL7MjW/mqUQicPn3akGTs2LHDYvuYMWOM+vXrp2s/fvx4QxILCwsLCwsLC8t9usTGxuZXqpkryFdZWFhYWFhYWArXkpV8tVCMuM2usLAwjR492ryempqqCxcuqHjx4jKZTFaMLH8lJiaqTJkyio2Nlaenp7XDua9xL3MP9zL3cC9zD/cyd3E/c09hvJeGYejy5cvy9/e3dih5inz1X4XxM55XuJe5h3uZe7iXuYd7mXu4l7mnsN7L7OSrhaJwW6JECdnb2ys+Pt5ie3x8vPz8/NK1d3Z2lrOzs8U2b2/vvAzRpnl6ehaqP0B5iXuZe7iXuYd7mXu4l7mL+5l7Ctu99PLysnYI2Ua+mjOF7TOel7iXuYd7mXu4l7mHe5l7uJe5pzDey6zmq4Xi5WROTk76f+3deXxM994H8M+ZSUIixFLLtUVoSDVUbLVzbU0k5RFrH1qXR90WJVUPLSqWXlpqad1qEhXEvi+3dMPjXnpbtadqSYTUVhTZmpBkMt/njzRHRvQW/c2cmeTz/ivOnMnrl48zM5/5na1Zs2bYs2ePvsxqtWLPnj1o3bq1gSMjIiIiImJfJSIiIqKiSsQRtwAwbtw4DBkyBM2bN0fLli2xcOFCZGZmYujQoUYPjYiIiIiIfZWIiIiIbJSYidsBAwbg559/xtSpU3Ht2jU0adIEn3/+OapWrWr00JxWqVKlEBkZWeQ0PHp0zFIdZqkOs1SHWarFPNVhlq6FffXRcRtXh1mqwyzVYZbqMEt1mKU6zPL3aSIiRg+CiIiIiIiIiIiIiO4pEde4JSIiIiIiIiIiInIlnLglIiIiIiIiIiIicjKcuCUiIiIiIiIiIiJyMpy4JSIiIiIiIiIiInIynLglIiIiIiIiIiIicjKcuCUiIiIiIiIiIiJyMpy4JaIST0SMHgLRf8RtlIiIqORiDyBXwO2UyD7cjB4AFV8ZGRkoW7as0cMoFi5evIjU1FRUrFgRlSpVgqenp9FDcmnHjx9HcnIyPD09ERgYiBo1ahg9pGIjMzMTZcqUMXoYxcL58+dx584dmEwmPPXUU0YPp0TJy8uD2Ww2ehgu7eeff4bZbEZ2djb+9Kc/GT0cot/EvqoO+6o67Kr2xb6qDvuqcdhX/zhX6as84pbsYtOmTXj11Vdx4sQJo4fi8uLi4tCjRw+Ehoaibdu2mDNnDlJSUowelsuKjY1F7969MWnSJIwcORKRkZFITU01eljFwrp16zB27FicP3/e6KG4vJUrV+L5559Hz5490ahRI7zzzjsAeCSDPa1duxazZs0CAJjNZlitVoNH5LrWrFmDAQMGoEWLFujVqxfWrVtn9JCIHoh9VR32VXXYVe2LfVUd9lXHY19Vx6X6qhAptmPHDvHw8JDq1avLiBEjJD4+3ughuay1a9eKj4+PxMbGyvfffy+RkZFSr149OXbsmNFDc0mrVq2SsmXLytq1ayUlJUUWLVokvr6+cuPGDX0dq9Vq4Ahd144dO8TT01M0TZNBgwbJjz/+aPSQXNbatWvF29tbVq1aJfHx8bJixQrRNE327Nlj9NCKra1bt4qmaaJpmkRGRurL8/LyjBuUi4qLixMvLy+JioqS6Ohoef311yUgIEBOnjxp9NCIbLCvqsO+qg67qn2xr6rDvup47KvquFpf5cQtKXX9+nUJCwuTCRMmyMcffyxNmzaVYcOGsQw/hsTERGnbtq0sXLjQZnmzZs1k/PjxBo3KdZ09e1aCgoIkKipKX5aamirdu3eXJUuWyPr16/U3ahbiR3Pjxg0ZPHiwTJkyRfbu3Suenp4yYMAAluHHkJiYKO3atZPFixeLyL1tsXv37jJx4kSbZaRGYmKiBAcHy9ixY2XOnDlSvnx5mTJliv44y/DDO3bsmAQGBsqKFSv0ZSdOnJC6devKP/7xDwNHRmSLfVUd9lV12FXti31VHfZVx2NfVccV+yqvcUtKPfHEExg8eDAqV66Mzp07w9vbGwsWLMDChQsxduxYNG7c2GZ9EYGmaQaN1rmlp6ejVq1a6Ny5MwDAYrHAzc0NgYGByMrKMnh0rqdMmTKYMGEC2rZtqy976aWXcPjwYaSmpsLDwwNnz57Fzp070aJFCwNH6npKlSqFkJAQVK9eHZ06dcL+/fvRvn17AMCcOXNQu3Ztg0foOnJzc2GxWNCyZUsA0N8fq1SpgkuXLhk5tGLL29sbTz/9NAYOHIiAgAB4eHhg2rRpAICZM2fCZDLBarXCZOLVpX5Pamoq/Pz88Oyzz+rLGjduDF9fX5w9exZhYWG8Hhs5BfZVddhX1WFXtS/2VXXYVx2PfVUdl+yrRs8cU/GTm5tr8++4uDhp2rSpDB06VD+S4ebNm3LmzBkjhudSvv32W/1ni8UiIiJvv/22jBkzxma969evO3Rcrio9PV3/+e233xZfX185efKk5OTkyPnz56VTp04yevRosVgs3Ev8iDIzM23+ffjw4SJHMqSmpsqBAweMGJ5LOX36tP5zTk6OiIi88cYbMmLECJv1rl696tBxFWepqan6zzdv3pQFCxYUOZIhNTVVbt26ZcTwXMbly5cf+LnVsWNHeffdd40aFtEDsa+qw76qDruqfbGvqsO+6njsq2q4Yl/ldDwp5+aWfyB3Xl4eAODFF19EREQE4uPj8cEHH2Dfvn3o3bs3xowZY+QwnVrBRcYL9gKJiL7HJyUlBT/99JO+vH///vjggw+MGaiLKXzX6EmTJuHgwYN4+umn4e7uDj8/P7i7u8NqtcJsNvPImkfk5eUFIH+bzMvLQ7NmzfCvf/0LO3bswJtvvokjR46gZ8+eWLx4scEjdV7y640cAgICAEDfFgukpaXp6z3//PNYuXKl4wdZTPn4+ADIz7ZSpUoYMmQIpk2bho8++ghTp06F1WpFcHAwli5davBInVuNGjVsPrcK3kc9PDyQm5urL+/cuTN27Nhh2DiJAPZVFdhX1WNXtS/21T+OfdU47KtquGJf5aUSyG7MZrP+QnjxxRdhMpkwb948rF69Gv7+/tizZ4/RQ3Ra95/iULiYmUwmlC5dGgAQGhqK06dPY/Xq1Q4dn6vLy8tD6dKl9RwB6Hc+btiwoVHDKhY0TYPZbIbFYkHz5s1x4MABdOzYEZs2bULdunWxe/duo4fotO7/Alb4fSA3N1cvEmFhYfj++++xZcsWh46vJCj4P6hQoQJeeuklmEwmTJ8+HYsXL0bZsmURERFh7ABdiKZpep6enp769hwaGorExESEhIQYOTwiHfvq42NftR92VftiX3187KvGY19Vx1X6Ko+4JbvSNE3fK9e3b1+kpqaiSZMmOHr0KNzd3WGxWAweoesoOKqhatWq8Pb2Rq9evXDu3DkkJCQwy0dUeK+wiODWrVsYMmQI0tPT8de//tXAkRUfbm5uEBE0bdoUdevWxbPPPouTJ09yW31EBUeCeXt7o2zZsujXrx8SExORlJTELO2sQoUK6NatG9zd3REQEIDExERm/ogKPv9FBBaLBS+88AISExNx/vx5ZklOhX1VHfZVNdhVHYN9VQ32VeOwr/5xrtBXOXFLj61gA/89mqbhzp076NChAywWC/bv3w83Nzf95gX0cFkW7P1JS0tDVFQUfvzxR/zwww/6mwmzvOdht83s7GysWbMGL774Iq5evapvmwXlg4p62GwBICcnB+Hh4bhx4wb27t3L1/19HuV1n5eXh7i4OFy8eJGvewfJyMjAhAkT4O3tjX379nH7/QNycnIwbdo0nDlzBqdOneL2Sw7FvqoO+6o67Kr2xb6qDvuqc2NfVceZ+yonbumR3bx5E0DR0yT+E09PT0yfPh1JSUl8MynkcbL08/PDc889h8OHDzvVm4kzeNQ8S5UqBS8vL3Tq1AnffvutnqdT3UHSSfz888+wWCyPtK2aTCaMHj0aly5d4rZayKNkWbBO06ZN0bBhQ3z99dfM8hEV/sLxKF/k7ty5g6CgIJw6dYqfW7961CwLtt8WLVqgQ4cOOHToELdfchj2VXXYV9VhV7Uv9lV12Fcdi31VneLYVzV5lK2CSrzt27dj2bJlCA8Px0svvfRQzynYxApeEM70AjDS42RZwGq1wmQyMctC/kieBfLy8liEH2Dbtm3YvHkz2rRpgxEjRjxWRtxW8/2RLAuuwcgs/7jCNyJ4GLm5uXB3d7fjiFzXw2SZnJyM2rVrw2QyMUtyCPZVddhX1WFXtS/2VXXYV50D+6o6rt5XecQtPbTY2Fi8/PLLaNasGapUqfJIzy14keTk5PANHI+fZcHF3k0mE+7cucMsf/W4eRY+zSw7O5tF+AFiY2MxfPhwPPnkkwgKCnrojAqucVeA2+rjZ1lwXaWC91Fm+fCOHTuGTz75BP3798eIESPw2Wef4datWzbXs3yQ+7dfZypuRnncLAGgTp06+mmUzJLsjX1VHfZVddhV7Yt9VR32VcdjX1Wn2PZVIXoIW7ZskQoVKsjGjRvFarX+5nr3P1b43ytXrpTY2FjJzc212zhdgYosV61axSx/xTztZ9u2bVKuXDnZsGHDb2bzoMwLL1u8eLGsWLHCbmN0FczS8VauXCmBgYHSpUsX6dixo/j7+0uZMmVk8ODBcuHCBRH5/czXr18vO3fudNSQnRazJFfBvqoO+5U6zNK+2LHUYZaOx46lTnHOkhO39LtycnJk+PDh8vbbb9ssP3v2rKxfv17ef/99OXHihOTk5Ng8XvgFEB0dLZqmya5duxwyZmfFLNVinvZhtVolOztbhg4dKpMnT7Z5LCEhQVavXi0zZ86UU6dOPfC5BWJiYsRkMsnGjRvtPmZnxSyNER0dLV5eXhIbGys//fSTvnz8+PHi6+sr/fv3l6tXrxZ5XuHMP/74Y/Hx8ZEvv/zSIWN2VsySXAU7gTrMUh1maT/sWOowS2OwY6lT3LPkxC39ruzsbGnatKmMHDlSXzZ79mx57rnnxMfHRypUqCB169aVzz//XH+88AsgKipKfHx8ZPPmzQ4dtzNilmoxT/vq1q2bvPrqq/q/Z82aJSEhIeLt7S1169YVT09P2b9/v4jk53p/tuXKlZMtW7Y4fNzOiFk6TlxcnGiaZlO6Cuc5efJk8fHxkejoaJvHHvTeUNK/eDBLciXsBOowS3WYpf2xY6nDLB2HHUudkpAlJ27pgQpvzHl5eRIZGSlBQUHy1ltvSefOneXJJ5+UyMhIfa9b48aNpVevXkV+T8Eb+KZNmxw5fKfCLNVinvYVHx8v6enpkpubK6+88oq0bt1a3njjDenUqZP4+/vL9OnTJT4+XvLy8qRHjx7SqlUrsVgskpeXp/+O6OhoZivM0ghJSUlSuXJl6d69u9y+fdvmscK5tmvXTtq0afPA38HM8zFLcgXsBOowS3WYpf2xY6nDLB2PHUudkpIlJ27poRw/flxGjx4tzz77rPTo0UNOnjwpGRkZ+uNjx46V8PBwmxfHRx99JD4+Pk79AjACs1SLearz97//XcxmsyQkJIiIyM2bN2XQoEESHBwsPXr0kPj4eD3bvLw8GT16tISHh9v8jgULFki5cuVK/JEhzNI4c+bMkZYtW8rYsWP161kVyM7OFhGRefPmiZ+fn9y4ccNmb/vf//538fb2Zua/YpbkatgJ1GGW6jBLtdix1GGWxmHHUqckZMlb/VERx48fx8mTJ7F79254e3tj8ODBaNq0KRYtWoTc3Nwid9jLyspCfHw8WrVqBZPJBBFBVlYWNm/ejCVLlqBPnz4G/SXGY5ZqMU/7iY6OxhtvvIF169bB398fIoJKlSohNjYWJpOpyJ1hc3JykJCQgKCgIJtlhw8fxscff4zw8HBH/wlOg1kaw2q1wmQy4X//939hNpuxatUqAEBERATq1KkDEYGHhwcAICkpCYGBgahcubL+/HPnzmHLli1YunRpic+cWZIrYCdQh1mqwyztix1LHWZpDHYsdUpUlkbMFpPzWrVqlTRu3Fg6duwoTZs2lTp16oibm5u89tprkpiYKCL3DjnPzs6WS5cuSUhIiDRr1ky/82TB43fu3DHmj3ASzFIt5mk/MTExYjabZevWrTbLT5w4of9ckF1OTo6cP39eQkJCpEmTJnq2BXsuS/rdjpmlsQofrTRv3jwJCgoqsvf96tWr0q1bN5kzZ06R5168eNFRQ3V6zJKcGTuBOsxSHWZpX+xY6jBLY7FjqVNSsuTELemio6OlTJkyEhsbK1euXBGR/I05IiJCfHx85JVXXtHv0JeamiozZsyQP//5z9KuXTv9TqgWi8Ww8TsTZqkW87SftWvXiqZpsn37dpvlwcHBEhgYKHfv3tWX3b59W8aPHy/du3eX9u3bM9v7MEvHK8ircG4PKnBjxoyRy5cvi4hIaGiotGnTxuY5hU+ZKqmYJbkKdgJ1mKU6zNK+2LHUYZaOx46lTknNkpdKIADAihUr8Oqrr+LTTz9FSEgIRAQAYDKZsGDBAri5ueHDDz9E586d0a9fP1y6dAlubm4IDQ1FREQEzGYzLBZLkVMqSiJmqRbztK/r168DAG7fvq0v69u3L65du4YdO3agVKlS+nKz2YzSpUuje/fuzPYBmKVj7dmzB/Pnz8f69evh7e2NvLw8mM1mmEwm/dSpcePGAQBWr14Ns9mM7777Djdv3sT3338Ps9msP0fTNIP/GmMxS3IV7ATqMEt1mKX9sWOpwywdix1LnRKdpZGzxuQckpKSRNM06d27t82F8kVs92S0bt1a2rVrp+/RKLw3jnvd8jFLtZin/RQ+rem9994Tk8kky5Ytk/79+0tgYKAkJyeLyL29kXl5efLLL7/Y/A5mm49ZOp7VapVPPvlEGjVqJP369dPzLJxj4Z8XLlwoXl5e0rRpU/1oEZ7al49ZkqtgJ1CHWarDLO2LHUsdZul47FjqlPQsOXFLIiIye/Zs8fPzk8jISP2Q8gIFG/qUKVOkYcOGcuvWLSOG6DKYpVrMU71t27ZJWFiYpKSk6MtmzZolmqZJhQoVihQ3EZGQkBCZNWuWo4fq9JilcbKzs2XFihXSsmVL6d279wMLXMF6IiK7d+/WH3Pl4mYPzJJcBTuBOsxSHWZpH+xY6jBL47BjqVOSs+TEbQlVeE9agVmzZkmNGjVk2rRp+rWZCnv55ZclPDzcYWN0FcxSLeZpf99++62ULl1a+vfvL6mpqfryRYsWiaZpEhMTY1PcwsLCpHbt2vqXD7qHWRrr7t27snz5cmnRooVNgSt4/7h27Zp06dJFIiMj9efwaJEHY5bkjNgJ1GGW6jBLx2DHUodZGosdS52SmiUnbkuoW7duyY0bNyQxMVHS0tL05e+8845eOgrvMb5y5Yp07dpV5s+fb8RwnRqzVIt5OsahQ4ekUqVKEh4eblPgZs2aJSaTSWJiYkREpEePHlK/fv1icYqJvTBLx/jnP/8pixYtkgEDBsiECRPk008/FZH8MhYXF6cXuMzMTBHJf29o3769TeaUj1mSq2AnUIdZqsMsHYcdSx1m6RjsWOowy3s4cVsCrVu3Trp37y7Vq1cXd3d3adGihUydOlV/vKB0REZGyvXr10Uk/058bdu2LRZ7K1RilmoxT/u5ffu2zelRIiLffffdAwvc7NmzxcPDQ/70pz9Jw4YNWdzuwywdb8mSJVKtWjUJDg6W1q1bi5+fn2iaJiNHjpSrV6+KxWLRT53q06ePJCUlSdeuXZn5AzBLchXsBOowS3WYpX2xY6nDLB2PHUsdZmmLE7clzNKlS8XLy0sWLFggGzdulO3bt0u3bt3E09NT+vTpo6/3t7/9TWrVqiUzZsyQjh072uy1YOnIxyzVYp72s27dOunQoYM0adJEunXrZnNq328VuHfeeUdatmxZLD/4/ghm6XibN28Wb29v2bx5s2RlZYmIyPnz52Xu3Lni5uYmQ4cOldzcXMnOzpZly5ZJ69atRdM0CQgIYOb3YZbkKtgJ1GGW6jBL+2LHUodZOh47ljrMsihO3JYgBw8elNq1a8vGjRttll+9elUmT54sHh4eMnLkSH35nDlzRNM0eeaZZ4rtC+BxMUu1mKf9REVFiaenp7z77rvy/vvvS0BAgAwfPtxmnYMHD0rFihWlT58+NgWu4FpXzDYfs3Qsq9UqmZmZEh4eLjNmzBCRovl9+OGHommaLFmyRETyb0awePFiGTZsmL4uM2eW5FrYCdRhluowS/tix1KHWToWO5Y6zPK3ceK2BFm9erW0bdtWUlJS9I25YO/b9evXZciQIeLn5yfHjx/Xn7Nly5Zi/QJ4XMxSLeZpH7GxsWI2m/XrAYmIREREyMSJEyUpKUlSUlLk7t27IpJf4KpUqSKdOnWSjIwMff3CNyooyZilMbKyssTX11eioqJEpGiGt2/flq5du0rr1q31PfIWi4VfPB6AWZKrYCdQh1mqwyzthx1LHWZpDHYsdZjlg5lAJcaRI0dw5coVlC9fHm5ubgAAk8kEEUGVKlUwduxYJCcnIzk5WX9O79694ebmBovFoj+HmKVqzFO9f//73xg+fDheeeUVhIaG6suPHDmClStXolWrVqhXrx7mz5+PtLQ0tGzZElu2bIGnpye8vLz09TVNM2L4ToVZGsNiseDu3btIT09HZmYmgKIZVqhQAS1btsSVK1dgtVoBAGazGZqmQUT43vArZkmuhJ1AHWapDrO0D3YsdZilMdix1GGWv40TtyVI7dq1kZaWhmPHjkFE9OUFLwZfX19UqlRJf5EUVlxfAI+LWarFPNWrVasWunTpgnPnzmHjxo0AgAEDBuD69etYsWIF9u/fj759+2LGjBlITEwEALRt2xa7du2CyWTSPwiJWTraN998AyD/te3p6Yn27dtj1apVOHnypL6OiCAvLw8A4O7ujsDAQJQpU8bm9/CLB7Mk18ROoA6zVIdZ2gc7ljrM0rHYsdRhlr+PE7clSLdu3ZCdnY3o6Gjk5OToywteANeuXUPNmjXh5+dn1BBdBrNUi3mqV6tWLcTExMDd3R0xMTFo3rw5Tp8+jX379qFr165o0KAB5syZA7PZrH9YFmYy8eOhALN0nMuXL6NXr17o2bMnAKB06dLo1asXfvjhB8ybNw+nT58GkF/MzGYzLBYL9u/fj/r16xs5bKfELMlVsROowyzVYZb2wY6lDrN0HHYsdZjlQ3LslRnIUU6ePClfffWVzJ8/X/bu3SvJyckiIjJ37lwxm83y2muvyaVLl/T17969Kz169JDOnTvb3HWSmKVqzNN+kpOT5dixY5Kamqpf3+f8+fPSq1cvqVixoixYsMBm/XPnzklAQIBs27bNgNE6N2ZpjKysLFm9erXUrVtXwsPD9eWTJ08WTdOke/fusnHjRrl48aJ8/fXX0qNHD3n66af1/yNel+0eZkmugJ1AHWapDrO0L3YsdZilMdix1GGWD4cTt8XQsmXLJCAgQOrXry/ly5eXUqVKSZ06dWTfvn2SlZUl06dPF3d3d2nYsKEMGjRIRo4cKe3bt5dGjRrpdz1l6cjHLNVinvazYsUKadiwoVStWlXq1asnu3fv1h+7ePGihIWFSefOnSUuLk5fHhYWJu3atROLxWLEkJ0WszRGQfFKT0+X7du3i5+fnwwaNEh/fP78+RIUFCSapkmZMmXkmWeekdDQUP29gdnfwyzJFbATqMMs1WGW9sWOpQ6zNAY7ljrM8uFx4raYWbVqlZQuXVpWr14t58+fF5H8N/X27dtLqVKl5IsvvhARkb1798p//dd/SYsWLaR///4SGRnJu57eh1mqxTztJyoqSkqVKiVRUVHy/fffS8eOHaVly5Y265w7d05CQ0OlS5cusnr1agkNDRV/f/8S+cH3nzBLxyu4I6zVapXs7Gx9eatWrUTTNOnTp4++7Ny5c3L48GHZtWuXnDp1Sv9yzPeGfMySXAU7gTrMUh1maV/sWOowS8djx1KHWT46TtwWI5cvX5YWLVpITEyMiNgeNn7o0CHp0qWLlC9fXk6fPi0i+XuD73/D5ht4PmapFvO0n6VLl4qHh4fs3LlTX/bll19K79695dNPP5W9e/fqp/OdO3dOevbsKe7u7hIYGKgXt5L2wfdbmKXjffnllzJq1Ci5cOGCzfJ+/fpJYGCgfPTRR+Lr62tz6tT9eGRTPmZJroKdQB1mqQ6ztC92LHWYpeOxY6nDLB8PJ26LkYSEBKlZs6YcOnRIX1Z4o/7ss8+kYsWKMnv2bBFhufhPmKVazNM+Lly4INWrV5c2bdrYLP/zn/8s1apVk1q1akn16tWlefPmcu7cORHJv+7VW2+9xSND7sMsHavgC/HMmTOlQYMG8vrrr8uNGzdERCQ8PFyefvppuXr1qlgsFlm/fr34+vrKgAEDjByy02KW5GrYCdRhluowS/thx1KHWToWO5Y6zPKP4cRtMXDt2jUREfn6669F0zQ5ceKEzeOF9xi3adPmP+69KOmYpVrM075SU1MlJiZGatSoIaNGjRIRkf79+0tAQIAcO3ZM0tPTJTY2VmrUqGFzGl8BFrd7mKVjFX4vmD9/vjRt2lQmTpwowcHB8swzz+inqIrkn061YcMGKVWqlEyZMsWI4To1Zkmugp1AHWapDrO0P3YsdZilY7FjqcMs/xhO3Lq4hQsXSq1ateTmzZty9uxZqVChgkyZMkUyMzNt1ivYYxwSEqK/yZMtZqkW83SM1NRUWbZsmVSuXFmqVq0qQUFB+pcQkfx8GzVqxGwfArN0jKioKClbtqycPXtWXzZ37lypV6+ePPHEE3LgwAERyf+yXPCFOTMzU/bs2cMjnO7DLMlVsBOowyzVYZaOw46lDrN0DHYsdZjlH+cGclnR0dGYOHEi4uLiUKlSJVSqVAk9evTABx98gBYtWuC5555DqVKlAAAmkwkZGRnIyMhAQECAwSN3PsxSLeZpPxkZGUhPT4fVakWlSpXg4+ODgQMHAgCmT5+O+vXro2rVqgAAq9WKX375BeXKlUOdOnUMHLVzYpaOFxMTg1GjRmHTpk2oX7++vnz8+PFwd3dHbGwstm7dipo1a8LX1xeSv4MZXl5e6Ny5MwAgLy8PZrPZqD/BaTBLchXsBOowS3WYpX2xY6nDLB2PHUsdZqmIcXPG9EfExMSIh4eHbN261WZ5cnKyhISEyBNPPCFRUVFy5coVERG5dOmShIaGSlBQEPda3IdZqsU87Wf9+vUSHBwsVatWlcqVK0udOnVk2bJlcuvWLcnNzZVly5ZJlSpVZPjw4fpzQkJCJCgoiKdG3YdZOl5UVJSYzWbZvHmzzfKDBw/qP8+dO1eCgoLk9ddfl+TkZEcP0WUwS3IV7ATqMEt1mKV9sWOpwywdjx1LHWapDiduXdD//d//iaZpMn36dJvlL730ksycOVOSkpIkLCxMzGazlCtXTurXry9BQUHSunVr/U6SLB35mKVazNN+li5dKmXKlJFZs2bJ5s2b5ZNPPpGePXuKpmkyZswYuX79umRnZ8uyZcukWrVq8te//lV69+4t9evXZ7b3YZaOt3nzZtE0Tfbu3WuzvG/fvjJkyBDJyMjQl73//vvSvHlzGTZsmM2pf5SPWZKrYCdQh1mqwyztix1LHWbpeOxY6jBLtThx64ISEhKkffv20rNnT/3Op+Hh4dKgQQO5fPmyvt6mTZtk4cKF8u6778qOHTv0N27ufbuHWarFPO3j4MGDUqtWLVm7dm2RxyZMmCCapsl7770nIiIpKSmyfPlyKV26tDRo0EAvbsw2H7N0vIyMDBk1apRUqVJFli9fri/v06ePBAQE6HvXC3+5mDJlivzlL3+xuaM3MUtyLewE6jBLdZil/bBjqcMsHY8dSx1mqZ4mImL05Rro0SUmJmLMmDEwm81IS0tDVlYWNm/ejDp16vzHa4Dw+iBFMUu1mKd6S5YsQVxcHHbu3Ily5coByL+GlclkAgC8/PLL2LBhA86ePYtq1aohLS0NX3/9NZ577jmYzWZYLBa4ufGS5gCzNMrp06exdOlS7Ny5E2+++Sa++uorxMfHY9u2bahbty5EBJqm2fxfPGgZMUtyLewE6jBLdZilfbBjqcMsjcGOpQ6zVMyoGWP64xISEqRr167i4+MjGzZs0JcX3ImPHh6zVIt5qjVq1Chp3ry5iNhmWPDzv//9b/H29pZdu3YVeS5PkbLFLB3nm2++kdWrV+vZJiYmSkREhFStWlUqVqwo6enpImJ7REj79u1l7ty5+r/5npGPWZIrYydQh1mqwyzVY8dSh1k6DjuWOszSfjiN7cL8/f0RFRWFVq1aYdmyZThw4AAAQNM0CA+kfiTMUi3m+cd98cUXuH37NgCgdu3aOHXqFJKSkmwy1DQNQH7eubm5SE9PL/J7eGQIszTCypUr8Ze//AV79uzBoUOHAABPPvkkRo0ahRdeeAEVK1bE+vXrAQBubm7Iy8vD888/j59++gljxozRf0/B/0tJxizJ1bETqMMs1WGWarBjqcMsHY8dSx1maWdGzRiTOgkJCRIcHCzBwcFy4MABo4fj0pilWszz8aSnp0vDhg2ldu3akpKSIidPnpTq1avLwIED9Qu2F1y/SkTk2LFj0qJFCzl+/LhRQ3ZazNLxli9fLt7e3hIbGys//fRTkcdPnz4tY8eOlfr168uSJUtERCQ0NNTmZhq8Lls+ZknFCTuBOsxSHWb5+Nix1GGWjseOpQ6ztD9O3BYTCQkJEhoaKs2bN5cTJ04YPRyXxizVYp6P54cffpDmzZtL48aNJSUlRd566y0pX768DBs2zOYDMSsrS8LCwqRz5868mPtvYJaOc+bMGWnYsKHExcUVeezy5ct6Kbtw4YJERERIw4YNpXr16ixuD8AsqThiJ1CHWarDLB8fO5Y6zNJx2LHUYZaOwYnbYuTUqVMybtw4voErwCzVYp4PryCj3NxcSU5OlmbNmkmXLl0kNTVVxo0bJxUrVpSaNWvKhAkTZMSIEdKlSxdp1KiR/sHHjO9hlo63b98+qVu3rly4cEFftn79ehkyZIhUqFBBnnrqKdm4caOIiJw9e1aGDh0q3bp1Y3F7AGZJxRU7gTrMUh1m+WjYsdRhlo7HjqUOs3QMTYQX8SmOeCc+dZilWszzwW7duoVKlSoBAHJycuDh4QEACAkJwRdffIHWrVtj165dOHDgANauXYsTJ06gbt26aNKkCd5++224ubnxDrK/YpbG+eabbzBs2DCMHz8egwcPxujRoxEfH48aNWogNDQUX331Fb766iscP34ctWrVwuXLl1G9enWYTCZmfh9mSSUBO4E6zFIdZvnb2LHUYZbGYcdSh1k6iNEzx0REJd2//vUv6dSpk/zzn/+0Wd63b19p1KiR7N69W5o0aSJNmzaVlJQUERFJTU21WZd3kM3HLB1vw4YN+vWqbt26JQMGDJA6depIhQoVpF69erJhwwa5fv26iIhkZGSIt7e3rFq1yuZ38GiRfMySiIicFTuWOszS8dix1GGWjsfpbSIig1WpUgUigvfeew9lypRBs2bN0LdvX5w5cwafffYZatWqhTVr1mDQoEFo37499u3bp++hL8A7yOZjlo53/PhxzJ49G2azGUOHDsWiRYuQmJiIa9eu4fnnn4e7u7u+7vnz51GvXj3UqVPH5nfwyKZ8zJKIiJwVO5Y6zNLx2LHUYZaOx0slEBE5gcTERIwZMwZmsxlpaWnIzMzEli1bbD7kzpw5g+7du6NDhw5YtWqVcYN1cszS8WbMmIEZM2YgOjoa//M///PAdbKysvDCCy/g7t27+Oyzz1jYfgOzJCIiZ8WOpQ6zdDx2LHWYpYMZebgvERHdk5CQIF27dhUfHx/ZsGGDvrzwqSTJyck8NeohMEv7uz+7yMhIMZvNEhsba7M8LS1Ntm/fLsHBwdK4cWPeTOMBmCUREbkKdix1mKX9sWOpwyyNwyNuiYicSFJSEkaNGgWTyYRJkyahXbt2AIreKCMvL4+nSP0OZmkfp06dQsOGDQEUzW7atGn429/+hpUrV2LgwIHIycnBrFmzcPToUZQvXx6xsbG8mUYhzJKIiFwRO5Y6zNI+2LHUYZbG48QtEZGTKTh1CgCmTJmCtm3bGjwi18Us1frhhx8QFhaGQYMG4Z133gFQtMC9+eabeP/993H06FE0btwYN2/exNWrV9GoUSNomsYvHr9ilkRE5MrYsdRhlmqxY6nDLJ0DLzJBRORk/P398eGHH8JsNiMiIgLx8fFGD8llMUu1ypcvjxdeeAHbt2/HjBkzAOTfHCMvL09fZ+rUqejQoQNiY2NhsVjwxBNPoHHjxtA0DVarlcXtV8ySiIhcGTuWOsxSLXYsdZilc+CxykRETsjf3x9z587FJ598gsDAQKOH49KYpTo1atTAyJEj4eHhgTVr1sBqtWLatGkwm836KVBeXl7w9vaGiBQ5JYo3JbiHWRIRkatjx1KHWarDjqUOs3QOnLglInJSTz31FObNmweg6HWu6NEwy8eXkZGB9PR0WK1WVKxYETVr1sTIkSMBAOvWrYOmaYiMjNSL2i+//IKcnBybuyJTPmZJRETFDTuWOszy8bFjqcMsnQ8nbomIXACLmzrM8uFt2LABy5Ytw7Fjx2C1WlGmTBlMnToVffv2RUREBABg5cqV+PnnnxEZGYmLFy9i5syZuHHjBl577TVjB+9kmCURERV37FjqMMuHx46lDrN0Trw5GRERERURGxuLMWPGYPLkyWjQoAFSUlKwY8cO/OMf/8Do0aMxffp0aJqGDRs2YPr06cjKyoKfnx+qV6+OrVu3wt3dnTcj+BWzJCIiIlKPHUsdZum8OHFLRERENr777jv07dsXc+bMwcCBA20emzhxIubOnYvZs2dj4sSJyM3NRU5ODg4ePIhq1aohICAAJpNJv+5VSccsiYiIiNRjx1KHWTo3TtwSERGRjSVLliAuLg47d+5EuXLlANhea+3ll1/Ghg0bkJCQgKpVqxZ5Pq/Ldg+zJCIiIlKPHUsdZuncmCwRERHZOHHiBO7evYty5cqhYP+uyWTSfx42bBisViuOHj36wOezuN3DLImIiIjUY8dSh1k6N6ZLRERE+OKLL3D79m0AQO3atXHq1CkkJSVB0zS9tGmaBgDw9/dHbm4u0tPTDRuvM2OWREREROqxY6nDLF0HJ26JiIhKuIyMDIwbNw5BQUFITU1FaGgoypcvjylTpuD69evQNA25ubn6+pcvX0bjxo0REBBg4KidE7MkIiIiUo8dSx1m6Vo4cUtERFTClS1bFhs3bkSVKlXQsWNH1KhRA0OGDMHnn3+OSZMm4dq1a3B3dwcA3LlzB2+//TbKli2LRo0aGTxy58MsiYiIiNRjx1KHWboW3pyMiIioBCu4mYDFYsGVK1fQp08flC9fHps3b8aMGTOwfPlyeHl54b//+7+RmpqKpKQk3LhxA0eOHIG7uztvRlAIsyQiIiJSjx1LHWbpepg2ERFRCXTr1i0A+TcTyMnJgZubG3x9fVG5cmXs3bsXPXr0wNSpUxEXF4eOHTti165duHbtGtq2bYujR4/C3d0dFouFxQ3MkoiIiMge2LHUYZaui0fcEhERlTD79+/H1KlTMX36dHTo0EFf3q9fP5w9exYLFizA+PHjYTKZsGfPHpQvXx5paWnw8fHR183Ly4PZbDZi+E6FWRIRERGpx46lDrN0bZwqJyIiKmGqVKkCEcF7772HI0eOAAD69u2L06dPY+fOnejSpQvWrFkDEUH79u1x69Ytm+IGgMXtV8ySiIiISD12LHWYpWvjEbdEREQlUGJiIsaMGQOz2Yy0tDRkZmZiy5YtqFOnjr7OmTNn0L17d3To0AGrVq0ybrBOjlkSERERqceOpQ6zdF2cuCUiIiqhEhMTMXLkSBw6dAhLlixBv379AMDmpgM//vgjatasyb3sv4NZEhEREanHjqUOs3RNnLglIiIqwZKSkjBq1CiYTCZMmjQJ7dq1A4Aid4zlda1+H7MkIiIiUo8dSx1m6Xo4cUtERFTCFZw6BQBTpkxB27ZtDR6R62KWREREROqxY6nDLF0Lb05GRERUwvn7++PDDz+E2WxGREQE4uPjjR6Sy2KWREREROqxY6nDLF0LJ26JiIgI/v7+mDt3Ljp06IDAwECjh+PSmCURERGReuxY6jBL18FLJRAREVER91/nih4fsyQiIiJSjx1LHWbpvDhxS0RERERERERERORkOJ1ORERERERERERE5GQ4cUtERERERERERETkZDhxS0RERERERERERORkOHFLRERERERERERE5GQ4cUtERERERERERETkZDhxS0RERERERERERORkOHFLRERERERERERE5GQ4cUtERERERERERETkZDhxS0RERERERERERORkOHFLRERERERERERE5GT+HzoBJvoAFyV5AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1400x600 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# | echo: false\n",
    "colors = [\n",
    "    (\"#A9B9C3\", 0.5),  # Grey-bluish color 1\n",
    "    (\"#7A8D9D\", 0.5),  # Grey-bluish color 2\n",
    "    (\"#5B6D79\", 0.5),  # Grey-bluish color 3\n",
    "    ('#F95D6A', 0.75)   # Green color for the last\n",
    "]\n",
    "\n",
    "\n",
    "# Filter evaluation data by metric and set unique_id as index\n",
    "rmse_df = evaluation_df[evaluation_df['metric'] == 'rmse'].set_index('unique_id')\n",
    "smape_df = evaluation_df[evaluation_df['metric'] == 'smape'].set_index('unique_id')\n",
    "\n",
    "# Plot function with custom colors and opacity\n",
    "def plot_metric(ax, df, title, ylabel):\n",
    "    x = np.arange(len(df))\n",
    "    bar_width = 0.2\n",
    "    for i, (col, (color, alpha)) in enumerate(zip(df.columns[1:], colors)):\n",
    "        ax.bar(x + i * bar_width, df[col], width=bar_width, label=col, color=color, alpha=alpha)\n",
    "    ax.set(title=title, ylabel=ylabel, xticks=x + bar_width * (len(df.columns[1:]) - 1) / 2, xticklabels=df.index)\n",
    "    ax.tick_params(axis='x', rotation=45)\n",
    "    ax.legend()\n",
    "\n",
    "# Generate side-by-side plots for RMSE and SMAPE\n",
    "fig, axes = plt.subplots(1, 2, figsize=(14, 6))\n",
    "plot_metric(axes[0], rmse_df, \"RMSE Comparison Across Models\", \"RMSE\")\n",
    "plot_metric(axes[1], smape_df*100, \"%SMAPE Comparison Across Models\", \"SMAPE\")\n",
    "\n",
    "plt.tight_layout()\n",
    "plt.show()\n",
    "     "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Benchmark Results\n",
    "For a more comprehensive dive into model accuracy and performance, explore our [Time Series Model Arena](https://github.com/Nixtla/nixtla/tree/main/experiments/foundation-time-series-arena)! TimeGPT continues to lead the pack with exceptional performance across benchmarks! 🌟\n",
    "\n",
    "<img src=\"https://github.com/Nixtla/nixtla/blob/main/nbs/img/timeseries_model_arena.png?raw=true\" alt=\"Benchmark\" />"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Conclusion\n",
    "At the end of this notebook, we’ve put together a handy table to show you exactly where TimeGPT shines brightest compared to other forecasting models. ☀️ Think of it as your quick guide to choosing the best model for your unique project needs. We’re confident that TimeGPT will be a valuable tool in your forecasting journey. Don’t forget to visit our [dashboard](https://dashboard.nixtla.io) to generate your TimeGPT `api_key` and get started today! Happy forecasting, and enjoy the insights ahead! "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "| Scenario                          | TimeGPT                                    | Classical Models (e.g., ARIMA)                         | Machine Learning Models (e.g., XGB, LGBM)               | Deep Learning Models (e.g., N-HITS)                   |\n",
    "|-----------------------------------|-------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|\n",
    "| **Seasonal Patterns**             | ✅ Performs well with minimal setup        | ✅ Handles seasonality with adjustments (e.g., SARIMA) | ✅ Performs well with feature engineering                | ✅ Captures seasonal patterns effectively              |\n",
    "| **Non-Linear Patterns**           | ✅ Excels, especially with complex non-linear patterns | ❌ Limited performance                                | ❌ Struggles without extensive feature engineering       | ✅ Performs well with non-linear relationships         |\n",
    "| **Large Dataset**                 | ✅ Highly scalable across many series      | ❌ Slow and resource-intensive                        | ✅ Scalable with optimized implementations               | ❌ Requires significant resources for large datasets   |\n",
    "| **Small Dataset**                 | ✅ Performs well; requires only one data point to start | ✅ Performs well; may struggle with very sparse data | ✅ Performs adequately if enough features are extracted  | ❌ May need a minimum data size to learn effectively   |\n",
    "| **Preprocessing Required**        | ✅ Minimal preprocessing needed            | ❌ Requires scaling, log-transform, etc., to meet model assumptions | ❌ Requires extensive feature engineering for complex patterns | ❌ Needs data normalization and preprocessing          |\n",
    "| **Accuracy Requirement**          | ✅ Achieves high accuracy with minimal tuning | ❌ May struggle with complex accuracy requirements   | ✅ Can achieve good accuracy with tuning                 | ✅ High accuracy possible but with significant resource use |\n",
    "| **Scalability**                   | ✅ Highly scalable with minimal task-specific configuration | ❌ Not easily scalable                               | ✅ Moderate scalability, with feature engineering and tuning per task | ❌ Limited scalability due to resource demands         |\n",
    "| **Computational Resources**       | ✅ Highly efficient, operates seamlessly on CPU, no GPU needed | ✅ Light to moderate, scales poorly with large datasets | ❌ Moderate, depends on feature complexity               | ❌ High resource consumption, often requires GPU       |\n",
    "| **Memory Requirement**            | ✅ Efficient memory usage for large datasets | ✅ Moderate memory requirements                      | ❌ High memory usage for larger datasets or many series cases | ❌ High memory consumption for larger datasets and multiple series |\n",
    "| **Technical Requirements & Domain Knowledge** | ✅ Low; minimal technical setup and no domain expertise needed | ✅ Low to moderate; needs understanding of stationarity | ❌ Moderate to high; requires feature engineering and tuning | ❌ High; complex architecture and tuning               |\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}