07_finetuning.ipynb 4.63 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "!pip install -Uqq nixtla"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide \n",
    "from nixtla.utils import in_colab"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide \n",
    "IN_COLAB = in_colab()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "if not IN_COLAB:\n",
    "    from nixtla.utils import colab_badge\n",
    "    from dotenv import load_dotenv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fine-tuning\n",
    "\n",
    "We can fine-tune TimeGPT by specifying the `finetune_steps` parameter."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| echo: false\n",
    "if not IN_COLAB:\n",
    "    load_dotenv()\n",
    "    colab_badge('docs/capabilities/forecast/07_finetuning')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from nixtla import NixtlaClient"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nixtla_client = NixtlaClient(\n",
    "    # defaults to os.environ.get(\"NIXTLA_API_KEY\")\n",
    "    api_key = 'my_api_key_provided_by_nixtla'\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> 👍 Use an Azure AI endpoint\n",
    "> \n",
    "> To use an Azure AI endpoint, remember to set also the `base_url` argument:\n",
    "> \n",
    "> `nixtla_client = NixtlaClient(base_url=\"you azure ai endpoint\", api_key=\"your api_key\")`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "if not IN_COLAB:\n",
    "    nixtla_client = NixtlaClient()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "df = pd.read_csv(\"https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv\")\n",
    "\n",
    "# Forecast with fine-tuning.\n",
    "# Here, we fine-tune for 5 steps\n",
    "forecast_df = nixtla_client.forecast(\n",
    "    df=df,\n",
    "    h=12,\n",
    "    finetune_steps=5,\n",
    "    time_col='timestamp',\n",
    "    target_col=\"value\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> 📘 Available models in Azure AI\n",
    ">\n",
    "> If you are using an Azure AI endpoint, please be sure to set `model=\"azureai\"`:\n",
    ">\n",
    "> `nixtla_client.forecast(..., model=\"azureai\")`\n",
    "> \n",
    "> For the public API, we support two models: `timegpt-1` and `timegpt-1-long-horizon`. \n",
    "> \n",
    "> By default, `timegpt-1` is used. Please see [this tutorial](https://docs.nixtla.io/docs/tutorials-long_horizon_forecasting) on how and when to use `timegpt-1-long-horizon`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "By default, only a small amount of finetuning is applied (`finetune_depth=1`). We can increase the intensity of finetuning by increasing the `finetune_depth` parameter. Note that increasing `finetune_depth` and `finetune_steps` increases wall time for generating predictions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "df = pd.read_csv(\"https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv\")\n",
    "\n",
    "# Forecast with fine-tuning.\n",
    "# Here, we fine-tune for 5 steps\n",
    "# and we finetune more than just the last layer\n",
    "forecast_df = nixtla_client.forecast(\n",
    "    df=df,\n",
    "    h=12,\n",
    "    finetune_steps=5,\n",
    "    finetune_depth=2,\n",
    "    time_col='timestamp',\n",
    "    target_col=\"value\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For more information on fine-tuning, read our [fine-tuning tutorial](https://docs.nixtla.io/docs/tutorials-fine_tuning)."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}