utils.py 7.88 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from functools import partial
from pathlib import Path
from typing import List

import numpy as np
import pandas as pd
from gluonts.dataset import Dataset
from gluonts.dataset.repository.datasets import (
    get_dataset,
    dataset_names as gluonts_datasets,
)
from gluonts.time_feature.seasonality import get_seasonality
from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mase, smape


def quantile_loss(
    df: pd.DataFrame,
    models: list,
    q: float = 0.5,
    id_col: str = "unique_id",
    target_col: str = "y",
) -> pd.DataFrame:
    delta_y = df[models].sub(df[target_col], axis=0)
    res = (
        np.maximum(q * delta_y, (q - 1) * delta_y)
        .groupby(df[id_col], observed=True)
        .mean()
    )
    res.index.name = id_col
    res = res.reset_index()
    return res


class ExperimentHandler:
    def __init__(
        self,
        dataset: str,
        quantiles: List[float] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
        results_dir: str = "./results",
        models_dir: str = "./models",
    ):
        if dataset not in gluonts_datasets:
            raise Exception(
                f"dataset {dataset} not found in gluonts "
                f"available datasets: {', '.join(gluonts_datasets)}"
            )
        self.dataset = dataset
        self.quantiles = quantiles
        self.level = self._transform_quantiles_to_levels(quantiles)
        self.results_dir = results_dir
        self.models_dir = models_dir
        # defining datasets
        self._maybe_download_m3_file(self.dataset)
        gluonts_dataset = get_dataset(self.dataset)
        self.horizon = gluonts_dataset.metadata.prediction_length
        if self.horizon is None:
            raise Exception(
                f"horizon not found for dataset {self.dataset} "
                "experiment cannot be run"
            )
        self.freq = gluonts_dataset.metadata.freq
        self.seasonality = get_seasonality(self.freq)
        self.gluonts_train_dataset = gluonts_dataset.train
        self.gluonts_test_dataset = gluonts_dataset.test
        self._create_dir_if_not_exists(self.results_dir)

    @staticmethod
    def _maybe_download_m3_file(dataset: str):
        if dataset[:2] == "m3":
            m3_file = Path.home() / ".gluonts" / "datasets" / "M3C.xls"
            if not m3_file.exists():
                from datasetsforecast.m3 import M3
                from datasetsforecast.utils import download_file

                download_file(m3_file.parent, M3.source_url)

    @staticmethod
    def _transform_quantiles_to_levels(quantiles: List[float]) -> List[int]:
        level = [
            int(100 - 200 * q) for q in quantiles if q < 0.5
        ]  # in this case mean=mediain
        level = sorted(list(set(level)))
        return level

    @staticmethod
    def _create_dir_if_not_exists(directory: str):
        Path(directory).mkdir(parents=True, exist_ok=True)

    @staticmethod
    def _transform_gluonts_instance_to_df(
        ts: dict,
        last_n: int | None = None,
    ) -> pd.DataFrame:
        start_period = ts["start"]
        start_ds, freq = start_period.to_timestamp(), start_period.freq
        target = ts["target"]
        ds = pd.date_range(start=start_ds, freq=freq, periods=len(target))
        if last_n is not None:
            target = target[-last_n:]
            ds = ds[-last_n:]
        ts_df = pd.DataFrame({"unique_id": ts["item_id"], "ds": ds, "y": target})
        return ts_df

    @staticmethod
    def _transform_gluonts_dataset_to_df(
        gluonts_dataset: Dataset,
        last_n: int | None = None,
    ) -> pd.DataFrame:
        df = pd.concat(
            [
                ExperimentHandler._transform_gluonts_instance_to_df(ts, last_n=last_n)
                for ts in gluonts_dataset
            ]
        )
        df = df.reset_index(drop=True)
        return df

    @property
    def train_df(self) -> pd.DataFrame:
        train_df = self._transform_gluonts_dataset_to_df(self.gluonts_train_dataset)
        return train_df

    @property
    def test_df(self) -> pd.DataFrame:
        test_df = self._transform_gluonts_dataset_to_df(
            self.gluonts_test_dataset,
            last_n=self.horizon,
        )
        return test_df

    def save_dataframe(self, df: pd.DataFrame, file_name: str):
        df.to_csv(f"{self.results_dir}/{file_name}", index=False)

    def save_results(self, fcst_df: pd.DataFrame, total_time: float, model_name: str):
        self.save_dataframe(
            fcst_df,
            f"{model_name}-{self.dataset}-fcst.csv",
        )
        time_df = pd.DataFrame({"time": [total_time], "model": model_name})
        self.save_dataframe(
            time_df,
            f"{model_name}-{self.dataset}-time.csv",
        )

    def fcst_from_level_to_quantiles(
        self,
        fcst_df: pd.DataFrame,
        model_name: str,
    ) -> pd.DataFrame:
        fcst_df = fcst_df.copy()
        cols = ["unique_id", "ds", model_name]
        for q in self.quantiles:
            if q == 0.5:
                col = f"{model_name}"
            else:
                lv = int(100 - 200 * q)
                hi_or_lo = "lo" if lv > 0 else "hi"
                lv = abs(lv)
                col = f"{model_name}-{hi_or_lo}-{lv}"
            q_col = f"{model_name}-q-{q}"
            fcst_df[q_col] = fcst_df[col].values
            cols.append(q_col)
        return fcst_df[cols]

    def evaluate_models(self, models: List[str]) -> pd.DataFrame:
        test_df = self.test_df
        train_df = self.train_df
        fcsts_df = []
        times_df = []
        for model in models:
            fcst_method_df = pd.read_csv(
                f"{self.results_dir}/{model}-{self.dataset}-fcst.csv"
            ).set_index(["unique_id", "ds"])
            fcsts_df.append(fcst_method_df)
            time_method_df = pd.read_csv(
                f"{self.results_dir}/{model}-{self.dataset}-time.csv"
            )
            times_df.append(time_method_df)
        fcsts_df = pd.concat(fcsts_df, axis=1).reset_index()
        fcsts_df["ds"] = pd.to_datetime(fcsts_df["ds"])
        times_df = pd.concat(times_df)
        test_df = test_df.merge(fcsts_df, how="left")
        assert test_df.isna().sum().sum() == 0, "merge contains nas"
        # point evaluation
        point_fcsts_cols = ["unique_id", "ds", "y"] + models
        test_df["unique_id"] = test_df["unique_id"].astype(str)
        train_df["unique_id"] = train_df["unique_id"].astype(str)
        mase_seas = partial(mase, seasonality=self.seasonality)
        eval_df = evaluate(
            test_df[point_fcsts_cols],
            train_df=train_df,
            metrics=[smape, mase_seas],
        )
        # probabilistic evaluation
        eval_prob_df = []
        for q in self.quantiles:
            prob_cols = [f"{model}-q-{q}" for model in models]
            eval_q_df = quantile_loss(test_df, models=prob_cols, q=q)
            eval_q_df[prob_cols] = eval_q_df[prob_cols] * self.horizon
            eval_q_df = eval_q_df.rename(columns=dict(zip(prob_cols, models)))
            eval_q_df["metric"] = f"quantile-loss-{q}"
            eval_prob_df.append(eval_q_df)
        eval_prob_df = pd.concat(eval_prob_df)
        eval_prob_df = eval_prob_df.groupby("metric").sum().reset_index()
        total_y = test_df["y"].sum()
        eval_prob_df[models] = eval_prob_df[models] / total_y
        eval_prob_df["metric"] = "scaled_crps"
        eval_df = pd.concat([eval_df, eval_prob_df]).reset_index(drop=True)
        eval_df = eval_df.groupby("metric").mean(numeric_only=True).reset_index()
        eval_df = eval_df.melt(id_vars="metric", value_name="value", var_name="model")
        times_df.insert(0, "metric", "time")
        times_df = times_df.rename(columns={"time": "value"})
        eval_df = pd.concat([eval_df, times_df])
        eval_df.insert(0, "dataset", self.dataset)
        eval_df = eval_df.sort_values(["dataset", "metric", "model"])
        eval_df = eval_df.reset_index(drop=True)
        return eval_df