main.py 13.7 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import logging
import os
from time import time
from typing import List, Optional, Tuple

import pandas as pd
import yaml
from dotenv import load_dotenv
from statsforecast import StatsForecast
from statsforecast.models import Naive, SeasonalNaive
from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mae, mape, mse

from nixtla import NixtlaClient


logger = logging.getLogger(__name__)
load_dotenv()


class Experiment:
    """
    This class represents an experiment for evaluating the performance of different models.
    The main method, evaluate_performance, is intended to be called for different models.
    """

    def __init__(
        self,
        df: pd.DataFrame,
        experiment_name: str,
        id_col: str,
        time_col: str,
        target_col: str,
        h: int,
        season_length: int,
        # Freq cannot be infered
        # because of StatsForecast
        freq: str,
        level: Optional[List[int]] = None,
        n_windows: int = 1,  # @A: this should be replaced with cross validation
    ):
        self.df = df
        self.experiment_name = experiment_name
        self.id_col = id_col
        self.time_col = time_col
        self.target_col = target_col
        self.h = h
        self.season_length = season_length
        self.freq = freq
        self.level = level
        self.n_windows = n_windows
        self.eval_index = [
            "experiment_name",
            "h",
            "season_length",
            "freq",
            "level",
            "n_windows",
            "metric",
        ]
        (
            self.df_train,
            self.df_test,
            self.df_cutoffs,
            self.has_id_col,
            self.comb_cv,
        ) = self._split_df(df)
        self.benchmark_models = ["SeasonalNaive", "Naive"]

    def _split_df(
        self, df: pd.DataFrame
    ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, bool, List]:
        has_id_col = self.id_col in df
        if has_id_col:
            df_test = df.groupby(self.id_col).tail(self.h)
            comb_cv = [self.id_col, self.time_col]
        else:
            df_test = df.tail(self.h)
            comb_cv = [self.time_col]
        df_train = df.drop(df_test.index)
        if has_id_col:
            df_cutoffs = (
                df_train.groupby(self.id_col)[[self.time_col]].max().reset_index()
            )
        else:
            df_cutoffs = df_train[[self.time_col]].max().to_frame().T
        df_cutoffs = df_cutoffs.rename(
            columns={
                self.time_col: "cutoff",
            }
        )
        return df_train, df_test, df_cutoffs, has_id_col, comb_cv

    def _evaluate_cv(
        self, cv_df: pd.DataFrame, total_time: float, model: str
    ) -> pd.DataFrame:
        metrics = [mae, mse, mape]
        if not self.has_id_col:
            cv_df = cv_df.assign(unique_id="ts_0")
        eval_df = cv_df.groupby("cutoff").apply(
            lambda df_cutoff: evaluate(
                df_cutoff,
                metrics=metrics,
                models=[model],
                id_col=self.id_col,
                time_col=self.time_col,
                target_col=self.target_col,
            )
        )
        eval_df = eval_df.reset_index().drop(columns="level_1")
        eval_df = eval_df.groupby(["metric"]).mean(numeric_only=True)
        eval_df = eval_df.reset_index()
        if len(eval_df) != len(metrics):
            raise ValueError(f"Expected only {len(metrics)} metrics")
        eval_df = pd.concat(
            [eval_df, pd.DataFrame({"metric": ["total_time"], model: [total_time]})]
        )
        for attr in reversed(self.eval_index):
            if attr not in eval_df.columns:
                eval_df.insert(0, attr, getattr(self, attr))
        return eval_df

    def _convert_fcst_df_to_cv_df(self, fcst_df: pd.DataFrame) -> pd.DataFrame:
        if self.has_id_col:
            # add cutoff column
            cv_df = fcst_df.merge(self.df_cutoffs, on=[self.id_col])
            # add y column
            merge_cols = [self.id_col, self.time_col]
        else:
            # add cutoff column
            cv_df = fcst_df.assign(cutoff=self.df_cutoffs["cutoff"].iloc[0])
            # add y column
            merge_cols = [self.time_col]
        cv_df = cv_df.merge(
            self.df_test[merge_cols + [self.target_col]],
            on=merge_cols,
        )
        return cv_df

    def evaluate_timegpt(self, model: str) -> Tuple[pd.DataFrame, pd.DataFrame]:
        init_time = time()
        # A: this sould be replaced with
        # cross validation
        timegpt = NixtlaClient()
        fcst_df = timegpt.forecast(
            df=self.df_train,
            X_df=(
                self.df_test.drop(columns=self.target_col)
                if self.df.shape[1] > 3
                else None
            ),
            h=self.h,
            freq=self.freq,
            level=self.level,
            id_col=self.id_col,
            time_col=self.time_col,
            target_col=self.target_col,
            model=model,
        )
        cv_df = self._convert_fcst_df_to_cv_df(fcst_df)
        total_time = time() - init_time
        cv_df = cv_df.rename({"TimeGPT": model}, axis=1)
        eval_df = self._evaluate_cv(cv_df, total_time, model)
        return eval_df, cv_df.drop(columns=[self.target_col, "cutoff"])

    def evaluate_benchmark_performace(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
        eval_df = []
        cv_df = []
        # wee need to rename columns if needed
        renamer = {
            self.id_col: "unique_id",
            self.time_col: "ds",
            self.target_col: "y",
        }
        df = self.df.copy()
        if not self.has_id_col:
            df[self.id_col] = "ts_0"
        df = df.rename(columns=renamer)
        for model in [SeasonalNaive(season_length=self.season_length), Naive()]:
            sf = StatsForecast(freq=self.freq, models=[model])
            init_time = time()
            cv_model_df = sf.cross_validation(
                df=df,
                h=self.h,
                n_windows=self.n_windows,
                step_size=self.h,
            )
            total_time = time() - init_time
            cv_model_df = cv_model_df.rename(
                columns={value: key for key, value in renamer.items()}
            )
            eval_model_df = self._evaluate_cv(cv_model_df, total_time, repr(model))
            eval_model_df = eval_model_df.set_index(self.eval_index)
            eval_df.append(eval_model_df)
            cv_df.append(cv_model_df.set_index([self.id_col, self.time_col, "cutoff"]))
        eval_df = pd.concat(eval_df, axis=1).reset_index()
        cv_df = pd.concat(cv_df, axis=1).reset_index()
        if not self.has_id_col:
            cv_df = cv_df.drop(columns=[self.id_col])
        return eval_df, cv_df.drop(columns=[self.target_col, "cutoff"])

    def plot_and_save_forecasts(self, cv_df: pd.DataFrame, plot_dir: str) -> str:
        """Plot ans saves forecasts, returns the path of the plot"""
        timegpt = NixtlaClient()
        df = self.df.copy()
        df[self.time_col] = pd.to_datetime(df[self.time_col])
        if not self.has_id_col:
            df[self.id_col] = "ts_0"
        cv_df[self.time_col] = pd.to_datetime(cv_df[self.time_col])
        fig = timegpt.plot(
            df[[self.id_col, self.time_col, self.target_col]],
            cv_df,
            max_insample_length=self.h * (self.n_windows + 4),
            id_col=self.id_col,
            time_col=self.time_col,
            target_col=self.target_col,
        )
        path = "plot"
        for attr in self.eval_index:
            if hasattr(self, attr):
                path += f"_{getattr(self, attr)}"
        plot_path = f"{plot_dir}/{path}.png"
        os.makedirs(plot_dir, exist_ok=True)
        fig.savefig(plot_path, bbox_inches="tight")
        return plot_path


class ExperimentConfig:
    def __init__(
        self,
        config_path: str,
        plot_dir: str,
    ):
        self.config_path = config_path
        self.plot_dir = plot_dir
        self.default_models = ["timegpt-1", "timegpt-1-long-horizon"]

    def _parse_yaml(self):
        with open(self.config_path, "r") as file:
            config = yaml.safe_load(file)
        return config

    def run_experiments(self):
        config = self._parse_yaml()
        eval_df = []
        for experiment_dict in config["experiments"]:
            experiment_name = list(experiment_dict.keys())[0]
            experiment = {}
            for d in experiment_dict[experiment_name]:
                experiment.update(d)
            df_url = experiment["dataset_url"]
            df = pd.read_csv(df_url)
            id_col = experiment.get("id_col", "unique_id")
            time_col = experiment.get("time_col", "ds")
            target_col = experiment.get("target_col", "y")
            season_length = experiment["season_length"]
            df[time_col] = pd.to_datetime(df[time_col])
            # list parameters
            # we will iterate over this parameters
            horizons = experiment["h"]
            levels = experiment.get("level", [None])
            frequencies = experiment.get("freq", [None])
            for h in horizons:
                for level in levels:
                    for freq in frequencies:
                        logger.info(
                            f"Running experiment {experiment_name} with h={h}, level={level}, freq={freq}"
                        )
                        exp = Experiment(
                            df=df,
                            experiment_name=experiment_name,
                            id_col=id_col,
                            time_col=time_col,
                            target_col=target_col,
                            h=h,
                            freq=freq,
                            level=level,
                            season_length=season_length,
                        )
                        # Benchmark evaluation
                        logger.info("Running benchmark evaluation")
                        (
                            eval_bench_df,
                            cv_bench_df,
                        ) = exp.evaluate_benchmark_performace()
                        eval_bench_df = eval_bench_df.set_index(exp.eval_index)
                        cv_bench_df = cv_bench_df.set_index(exp.comb_cv)
                        eval_models_df = [eval_bench_df]
                        cv_models_df = [cv_bench_df]
                        # models evaluation
                        logger.info("Running TimeGPT evaluation")
                        for model in self.default_models:
                            (
                                eval_model_df,
                                cv_model_df,
                            ) = exp.evaluate_timegpt(model=model)
                            eval_model_df = eval_model_df.set_index(exp.eval_index)
                            eval_models_df.append(eval_model_df)
                            cv_model_df = cv_model_df.set_index(exp.comb_cv)
                            cv_models_df.append(cv_model_df)
                        cv_models_df = pd.concat(cv_models_df, axis=1).reset_index()
                        plot_path = exp.plot_and_save_forecasts(
                            cv_models_df, self.plot_dir
                        )
                        eval_models_df = pd.concat(eval_models_df, axis=1)
                        eval_models_df["plot_path"] = plot_path
                        eval_df.append(eval_models_df.reset_index())
        eval_df = pd.concat(eval_df)
        return eval_df, exp.benchmark_models

    def summary_performance(
        self, eval_df: pd.DataFrame, summary_path: str, benchmark_models: List[str]
    ):
        logger.info("Summarizing performance")
        models = self.default_models + benchmark_models
        with open(summary_path, "w") as f:
            results_comb = ["metric"] + models
            exp_config = [col for col in eval_df.columns if col not in results_comb]
            eval_df = eval_df.fillna("None")
            f.write("<details><summary>Experiment Results</summary>\n\n")
            for exp_number, (exp_desc, eval_exp_df) in enumerate(
                eval_df.groupby(exp_config), start=1
            ):
                exp_metadata = pd.DataFrame.from_dict(
                    {
                        "variable": exp_config,
                        "experiment": exp_desc,
                    }
                )
                experiment_name = exp_metadata.query("variable == 'experiment_name'")[
                    "experiment"
                ].iloc[0]
                exp_metadata.query(
                    "variable not in ['plot_path', 'experiment_name']", inplace=True
                )
                f.write(f"## Experiment {exp_number}: {experiment_name}\n\n")
                f.write("### Description:\n")
                f.write(f"{exp_metadata.to_markdown(index=False)}\n\n")
                f.write("### Results:\n")
                f.write(
                    f"{eval_exp_df[results_comb].round(4).to_markdown(index=False)}\n\n"
                )
                f.write("### Plot:\n")
                plot_path = eval_exp_df["plot_path"].iloc[0]
                if plot_path.startswith("."):
                    plot_path = plot_path[1:]
                if os.getenv("GITHUB_ACTIONS"):
                    plot_path = f"{os.getenv('PLOTS_REPO_URL')}/{plot_path}?raw=true"
                f.write(f"![]({plot_path})\n\n")
            f.write("</details>\n")


if __name__ == "__main__":
    exp_config = ExperimentConfig(
        config_path="./action_files/models_performance/experiments.yaml",
        plot_dir="./action_files/models_performance/plots",
    )
    eval_df, benchmark_models = exp_config.run_experiments()
    exp_config.summary_performance(
        eval_df, "./action_files/models_performance/summary.md", benchmark_models
    )