demo.py 11.1 KB
Newer Older
lvskiller's avatar
model  
lvskiller committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

from argparse import ArgumentParser
from pathlib import Path

import copy
import gradio as gr
import os
import re
import secrets
import tempfile

from PIL import Image
from monkey_model.modeling_monkey import MonkeyLMHeadModel
from monkey_model.tokenization_qwen import QWenTokenizer
from monkey_model.configuration_monkey import MonkeyConfig

import shutil
from pathlib import Path
import json
DEFAULT_CKPT_PATH = '/home/zhangli/demo/'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
title_markdown = ("""
# Welcome to Monkey

Hello! I'm Monkey, a Large Language and Vision Assistant. Before talking to me, please read the **Operation Guide** and **Terms of Use**.
你好!我是Monkey,一个大型语言和视觉助理。在与我交谈之前,请阅读**操作指南**和**使用条款**。
## Operation Guide 操作指南

Click the **Upload** button to upload an image. Then, you can get Monkey's answer in two ways:点击**Upload**上传图像。你可以通过两种方式得到Monkey的回答:
 - Click the **Generate** and Monkey will generate a description of the image. 点击**Generate**,Monkey将生成图像的描述。
 - Enter the question in the dialog box, click the **Submit**, and Monkey will answer the question based on the image. 在对话框中输入问题,点击**Submit**,Monkey会根据图片回答问题。
 - Click **Clear History** to clear the current image and Q&A content.点击**Clear History**,清除当前图片和问答内容。
> Note: Monkey does not have a multi-round dialogue function. Perhaps we will further develop its capabilities in the future. 注意:Monkey没有多轮对话功能,或许我们在未来会进一步开发它的能力。
> Monkey支持中文,但使用英文提问会比使用中文效果明显好.""")

policy_markdown = ("""
## Terms of Use

By using this service, users are required to agree to the following terms:

 - Monkey is for research use only and unauthorized commercial use is prohibited. For any query, please contact the author.
 - Monkey's generation capabilities are limited, so we recommend that users do not rely entirely on its answers.
 - Monkey's security measures are limited, so we cannot guarantee that the output is completely appropriate. We strongly recommend that users do not intentionally guide Monkey to generate harmful content, including hate speech, discrimination, violence, pornography, deception, etc.

""")
def _get_args():
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")

    parser.add_argument("--share", action="store_true", default=False,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=8000,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args


def _load_model_tokenizer(args):
    tokenizer = QWenTokenizer.from_pretrained(
        args.checkpoint_path, trust_remote_code=True)

    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "cuda"

    model = MonkeyLMHeadModel.from_pretrained(
        args.checkpoint_path,
        device_map=device_map,
        trust_remote_code=True,
    ).eval()
    # model.generation_config = GenerationConfig.from_pretrained(
    #     args.checkpoint_path, trust_remote_code=True, resume_download=True,
    # )
    tokenizer.padding_side = 'left'
    tokenizer.pad_token_id = tokenizer.eod_id
    return model, tokenizer


def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def _launch_demo(args, model, tokenizer):
    def predict(_chatbot, task_history):
        chat_query = _chatbot[-1][0]
        query = task_history[-1][0]
        question =  _parse_text(query)
        print("User: " + _parse_text(query))
        full_response = ""


        img_path = _chatbot[0][0][0]
        try:
            Image.open(img_path)
        except:
            response = "Please upload a picture."
            _chatbot[-1] = (_parse_text(chat_query), response)
            full_response = _parse_text(response)

            task_history[-1] = (query, full_response)
            print("Monkey: " + _parse_text(full_response))
            return _chatbot

        query = f'<img>{img_path}</img> {question} Answer: '
        print(query)

        input_ids = tokenizer(query, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids
        
        pred = model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=False,
            num_beams=1,
            max_new_tokens=512,
            min_new_tokens=1,
echo840's avatar
echo840 committed
155
            length_penalty=1,
lvskiller's avatar
model  
lvskiller committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=tokenizer.eod_id,
            eos_token_id=tokenizer.eod_id,
            )
        response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()

        _chatbot[-1] = (_parse_text(chat_query), response)
        full_response = _parse_text(response)
        task_history[-1] = (query, full_response)
        print("Monkey: " + _parse_text(full_response))
        return _chatbot
    
    def caption(_chatbot, task_history):

        
        query = "Generate the detailed caption in English:"
        chat_query = "Generate the detailed caption in English:"
        question =  _parse_text(query)
        print("User: " + _parse_text(query))

        full_response = ""
        
        try:
            img_path = _chatbot[0][0][0]
            Image.open(img_path)
        except:
            response = "Please upload a picture."

            _chatbot.append((None, response))
            full_response = _parse_text(response)

            task_history.append((None, full_response))
            print("Monkey: " + _parse_text(full_response))
            return _chatbot
        img_path = _chatbot[0][0][0]
        query = f'<img>{img_path}</img> {chat_query} '
        print(query)
        input_ids = tokenizer(query, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids
        

        pred = model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=True,
            temperature=0.7,
            max_new_tokens=250,
            min_new_tokens=1,
echo840's avatar
echo840 committed
207
            length_penalty=1,
lvskiller's avatar
model  
lvskiller committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=tokenizer.eod_id,
            eos_token_id=tokenizer.eod_id,
            )
        response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()

        
        _chatbot.append((None, response))
        full_response = _parse_text(response)

        task_history.append((None, full_response))
        print("Monkey: " + _parse_text(full_response))
        return _chatbot
   


    def add_text(history, task_history, text):
        task_text = text
        if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
            task_text = text[:-1]
        history = history + [(_parse_text(text), None)]
        task_history = task_history + [(task_text, None)]
        print(history, task_history, text)
        return history, task_history, ""

    def add_file(history, task_history, file):
        history =  [((file.name,), None)]
        task_history = [((file.name,), None)]
        print(history, task_history, file)
        return history, task_history

    def reset_user_input():
        return gr.update(value="")

    def reset_state(task_history):
        task_history.clear()
        return []


    with gr.Blocks() as demo:
        gr.Markdown(title_markdown)

        chatbot = gr.Chatbot(label='Monkey', elem_classes="control-height", height=600,avatar_images=("https://ooo.0x0.ooo/2023/11/09/OehsLx.png","https://ooo.0x0.ooo/2023/11/09/OehGBC.png"),layout="bubble",bubble_full_width=False,show_copy_button=True)
        query = gr.Textbox(lines=1, label='Input')
        task_history = gr.State([])

        with gr.Row():
            empty_bin = gr.Button("Clear History (清空)")
            submit_btn = gr.Button("Submit (提问)")
            
            generate_btn_en = gr.Button("Generate")
            addfile_btn = gr.UploadButton("Upload (上传图片)", file_types=["image"])

        submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
            predict, [chatbot, task_history], [chatbot], show_progress=True
        )
        generate_btn_en.click(caption, [chatbot, task_history], [chatbot], show_progress=True)
        
        submit_btn.click(reset_user_input, [], [query])
        empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
        
        addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True,scroll_to_output=True)
        


        gr.Markdown(policy_markdown)
    demo.queue().launch(
        server_name="0.0.0.0",
        server_port=7681
    )


def main():
    args = _get_args()

    model, tokenizer = _load_model_tokenizer(args)
    _launch_demo(args, model, tokenizer)


if __name__ == '__main__':
    main()