window.py 20 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

import logging
import math
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import numpy as np

from itertools import repeat
import collections.abc
    


import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import trunc_normal_
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from functools import partial

from itertools import repeat
import collections.abc


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple


def make_divisible(v, divisor=8, min_value=None, round_limit=.9):
    min_value = min_value or divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < round_limit * v:
        new_v += divisor
    return new_v


def extend_tuple(x, n):
    # pads a tuple to specified n by padding with last value
    if not isinstance(x, (tuple, list)):
        x = (x,)
    else:
        x = tuple(x)
    pad_n = n - len(x)
    if pad_n <= 0:
        return x[:n]
    return x + (x[-1],) * pad_n



class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f'drop_prob={round(self.drop_prob,3):0.3f}'

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            norm_layer=None,
            bias=True,
            drop=0.,
            use_conv=False,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=False)
        self.act = act_layer()
        self.drop1 = nn.Dropout(0.05)

        self.fc2 = linear_layer(hidden_features, out_features, bias=False)
        self.scale = nn.Parameter(torch.ones(1))
        with torch.no_grad():
            nn.init.kaiming_uniform_(self.fc1.weight, a=math.sqrt(5))
            nn.init.zeros_(self.fc2.weight)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)

        
        x = self.fc2(x)
        x = self.scale*x
        return x



# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
_int_or_tuple_2_t = Union[int, Tuple[int, int]]
def window_partition(
        x: torch.Tensor,
        window_size: Tuple[int, int],
) -> torch.Tensor:
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.

    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
    return windows


def window_reverse(windows, window_size: Tuple[int, int], H: int, W: int):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    C = windows.shape[-1]
    x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
    return x


def get_relative_position_index(win_h: int, win_w: int):
    # get pair-wise relative position index for each token inside the window
    coords = torch.stack(torch.meshgrid([torch.arange(win_h), torch.arange(win_w)]))  # 2, Wh, Ww
    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
    relative_coords[:, :, 0] += win_h - 1  # shift to start from 0
    relative_coords[:, :, 1] += win_w - 1
    relative_coords[:, :, 0] *= 2 * win_w - 1
    return relative_coords.sum(-1)  # Wh*Ww, Wh*Ww


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.reduction_2 = nn.Linear(2 * dim,  dim, bias=False)
        self.norm = norm_layer(4 * dim)
        self.norm_2 = norm_layer(2 * dim)

    def forward(self, x):
        """
        X bxcxgxg
        x: B, H*W, C
        """
        size= self.input_resolution
        B, C, G,_ = x.shape
        assert G*G == size * size, "input feature has wrong size"

        x = x.reshape(x.shape[0],x.shape[1],-1) #bxcxl
        x = x.permute(0,2,1) #bxlxc
        B, _, C = x.shape

        x = x.view(B, size, size, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)
        x = self.norm_2(x)
        x = self.reduction_2(x)


        x = x.view(B,-1,C)
        x = x.permute(0,2,1) #bxcxl
        x = x.reshape(x.shape[0],x.shape[1],G//2,G//2) #bxcxl
        return x

class WindowAttention(nn.Module):
    """ Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports shifted and non-shifted windows.
    """
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            dim: int,
            num_heads: int,
            head_dim: Optional[int] = None,
            window_size: _int_or_tuple_2_t = 7,
            qkv_bias: bool = True,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
    ):
        """
        Args:
            dim: Number of input channels.
            num_heads: Number of attention heads.
            head_dim: Number of channels per head (dim // num_heads if not set)
            window_size: The height and width of the window.
            qkv_bias:  If True, add a learnable bias to query, key, value.
            attn_drop: Dropout ratio of attention weight.
            proj_drop: Dropout ratio of output.
        """
        super().__init__()
        self.window_size = to_2tuple(window_size)  # Wh, Ww
        win_h, win_w = self.window_size
        self.window_area = win_h * win_w
        self.num_heads = num_heads
        head_dim = head_dim or dim // num_heads
        attn_dim = head_dim * num_heads
        self.scale = head_dim ** -0.5

        # define a parameter table of relative position bias, shape: 2*Wh-1 * 2*Ww-1, nH
        self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * win_h - 1) * (2 * win_w - 1), num_heads))

        # get pair-wise relative position index for each token inside the window
        self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False)

        self.qkv = nn.Linear(dim, attn_dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(attn_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def _get_rel_pos_bias(self) -> torch.Tensor:
        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(self.window_area, self.window_area, -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        return relative_position_bias.unsqueeze(0)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)


        
        q = q * self.scale
        attn = q @ k.transpose(-2, -1)
        attn = attn + self._get_rel_pos_bias()
        if mask is not None:
            num_win = mask.shape[0]
            attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        x = attn @ v

        x = x.transpose(1, 2).reshape(B_, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Module):
    """ Swin Transformer Block.
    """

    def __init__(
            self,
            dim: int,
            hidden_dim:int,
            input_resolution: _int_or_tuple_2_t,
            num_heads: int = 4,
            head_dim: Optional[int] = None,
            window_size: _int_or_tuple_2_t = 7,
            shift_size: int = 0,
            mlp_ratio: float = 1.,
            qkv_bias: bool = True,
            proj_drop: float = 0.,
            attn_drop: float = 0.,
            drop_path: float = 0.,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = nn.LayerNorm
    ):
        """
        Args:
            dim: Number of input channels.
            input_resolution: Input resolution.
            window_size: Window size.
            num_heads: Number of attention heads.
            head_dim: Enforce the number of channels per head
            shift_size: Shift size for SW-MSA.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: If True, add a learnable bias to query, key, value.
            proj_drop: Dropout rate.
            attn_drop: Attention dropout rate.
            drop_path: Stochastic depth rate.
            act_layer: Activation layer.
            norm_layer: Normalization layer.
        """
        super().__init__()
        self.dim = dim
        self.hidden_dim = hidden_dim
        self.input_resolution = input_resolution
        ws, ss = self._calc_window_shift(window_size, shift_size)
        self.window_size: Tuple[int, int] = ws
        self.shift_size: Tuple[int, int] = ss
        self.window_area = self.window_size[0] * self.window_size[1]
        self.mlp_ratio = mlp_ratio
        self.downsample = nn.Linear(dim,hidden_dim,bias=False)

        self.norm1 = norm_layer(hidden_dim)
        self.attn = WindowAttention(
            hidden_dim,
            num_heads=num_heads,
            head_dim=head_dim,
            window_size=to_2tuple(self.window_size),
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.norm2 = norm_layer(hidden_dim)
        self.mlp = Mlp(
            in_features=hidden_dim,
            hidden_features=int(hidden_dim * 2),
            out_features = 1664,
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        
        attn_mask = self.calc_attn(self.input_resolution)
        self.register_buffer("attn_mask", attn_mask, persistent=False)

    def calc_attn(self,input_resolution):
        H, W = input_resolution
        H = math.ceil(H / self.window_size[0]) * self.window_size[0]
        W = math.ceil(W / self.window_size[1]) * self.window_size[1]
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        cnt = 0
        for h in (
                slice(0, -self.window_size[0]),
                slice(-self.window_size[0], -self.shift_size[0]),
                slice(-self.shift_size[0], None)):
            for w in (
                    slice(0, -self.window_size[1]),
                    slice(-self.window_size[1], -self.shift_size[1]),
                    slice(-self.shift_size[1], None)):
                img_mask[:, h, w, :] = cnt
                cnt += 1
        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_area)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        return attn_mask


    def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
        target_window_size = to_2tuple(target_window_size)
        target_shift_size = to_2tuple(target_shift_size)
        window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
        shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
        return tuple(window_size), tuple(shift_size)

    def _attn(self, x):
        B, H, W, C = x.shape

        # cyclic shift
        has_shift = any(self.shift_size)
        if has_shift:
            shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
        else:
            shifted_x = x

        # pad for resolution not divisible by window size
        pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
        pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
        shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h))
        Hp, Wp = H + pad_h, W + pad_w

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_area, C)  # nW*B, window_size*window_size, C


        attn_mask = self.attn_mask

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C
        shifted_x = shifted_x[:, :H, :W, :].contiguous()

        # reverse cyclic shift
        if has_shift:
            x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
        else:
            x = shifted_x
        return x

    def forward(self, x):
        
        x = self.downsample(x)
        B, H, W, C = x.shape
        # C = hidden_dim
        x = x + self.drop_path1(self._attn(self.norm1(x)))
        x = x.reshape(B, -1, C)
        x = self.drop_path2(self.mlp(self.norm2(x)))
        x = x.reshape(B, H, W, self.dim)
        return x

def get_abs_pos(abs_pos, tgt_size):
    # abs_pos: L, C
    # tgt_size: M
    # return: M, C
    src_size = int(math.sqrt(abs_pos.size(1)))
    tgt_size = int(math.sqrt(tgt_size))
    dtype = abs_pos.dtype

    if src_size != tgt_size:
        return F.interpolate(
            abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
            size=(tgt_size, tgt_size),
            mode="bicubic",
            align_corners=False,
        ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
    else:
        return abs_pos


class CrossWindowAttention(nn.Module):
    """ Patch Merging Layer.
    """
    def __init__(
            self,
            image_size,
            dim,
            hidden_dim,
            head,
            window_size = 12
    ):
        """
        Args:
            dim: Number of input channels.
            out_dim: Number of output channels (or 2 * dim if None)
            norm_layer: Normalization layer.
        """
        super().__init__()
        if isinstance(image_size, tuple) or isinstance(image_size, list):
            self.image_size = image_size
        else:
            self.image_size = (image_size,image_size)
        self.dim = dim 
        self.window_size = window_size
        self.shift_size = window_size // 2

        self.position_embedding = nn.Parameter(torch.zeros(1, self.image_size[0]*self.image_size[1], 1664))
        trunc_normal_(self.position_embedding, std=.02)
        self.shift_attn = SwinTransformerBlock(dim=dim,hidden_dim=hidden_dim,input_resolution = self.image_size,num_heads=head,window_size =self.window_size,shift_size=self.shift_size)

    def forward(self, x,image_size):
        # X bxcxgxg
        B,C,G,_=x.shape
        x = x.reshape(x.shape[0],x.shape[1],-1) #bxcxl
        x = x.permute(0,2,1) #bxlxc
        B, L, C = x.shape
        residual = x 
        H,W = image_size
        pos_embed = get_abs_pos(self.position_embedding,x.size(1))
        x = x + pos_embed
        x = x.view(B,H,W,C)
        x = self.shift_attn(x)
        x = x.view(B,-1,C)
        x = x + residual
        x = x.permute(0,2,1) #bxcxl
        x = x.reshape(x.shape[0],x.shape[1],G,G) #bxcxl
        return x