build.py 6.97 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------

from .swin_transformer import SwinTransformer
from .swin_transformer_v2 import SwinTransformerV2
from .swin_transformer_moe import SwinTransformerMoE
from .swin_mlp import SwinMLP
from .simmim import build_simmim


def build_model(config, is_pretrain=False):
    model_type = config.MODEL.TYPE

    # accelerate layernorm
    if config.FUSED_LAYERNORM:
        try:
            import apex as amp
            layernorm = amp.normalization.FusedLayerNorm
        except:
            layernorm = None
            print("To use FusedLayerNorm, please install apex.")
    else:
        import torch.nn as nn
        layernorm = nn.LayerNorm

    if is_pretrain:
        model = build_simmim(config)
        return model

    if model_type == 'swin':
        model = SwinTransformer(img_size=config.DATA.IMG_SIZE,
                                patch_size=config.MODEL.SWIN.PATCH_SIZE,
                                in_chans=config.MODEL.SWIN.IN_CHANS,
                                num_classes=config.MODEL.NUM_CLASSES,
                                embed_dim=config.MODEL.SWIN.EMBED_DIM,
                                depths=config.MODEL.SWIN.DEPTHS,
                                num_heads=config.MODEL.SWIN.NUM_HEADS,
                                window_size=config.MODEL.SWIN.WINDOW_SIZE,
                                mlp_ratio=config.MODEL.SWIN.MLP_RATIO,
                                qkv_bias=config.MODEL.SWIN.QKV_BIAS,
                                qk_scale=config.MODEL.SWIN.QK_SCALE,
                                drop_rate=config.MODEL.DROP_RATE,
                                drop_path_rate=config.MODEL.DROP_PATH_RATE,
                                ape=config.MODEL.SWIN.APE,
                                norm_layer=layernorm,
                                patch_norm=config.MODEL.SWIN.PATCH_NORM,
                                use_checkpoint=config.TRAIN.USE_CHECKPOINT,
                                fused_window_process=config.FUSED_WINDOW_PROCESS)
    elif model_type == 'swinv2':
        model = SwinTransformerV2(img_size=config.DATA.IMG_SIZE,
                                  patch_size=config.MODEL.SWINV2.PATCH_SIZE,
                                  in_chans=config.MODEL.SWINV2.IN_CHANS,
                                  num_classes=config.MODEL.NUM_CLASSES,
                                  embed_dim=config.MODEL.SWINV2.EMBED_DIM,
                                  depths=config.MODEL.SWINV2.DEPTHS,
                                  num_heads=config.MODEL.SWINV2.NUM_HEADS,
                                  window_size=config.MODEL.SWINV2.WINDOW_SIZE,
                                  mlp_ratio=config.MODEL.SWINV2.MLP_RATIO,
                                  qkv_bias=config.MODEL.SWINV2.QKV_BIAS,
                                  drop_rate=config.MODEL.DROP_RATE,
                                  drop_path_rate=config.MODEL.DROP_PATH_RATE,
                                  ape=config.MODEL.SWINV2.APE,
                                  patch_norm=config.MODEL.SWINV2.PATCH_NORM,
                                  use_checkpoint=config.TRAIN.USE_CHECKPOINT,
                                  pretrained_window_sizes=config.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES)
    elif model_type == 'swin_moe':
        model = SwinTransformerMoE(img_size=config.DATA.IMG_SIZE,
                                   patch_size=config.MODEL.SWIN_MOE.PATCH_SIZE,
                                   in_chans=config.MODEL.SWIN_MOE.IN_CHANS,
                                   num_classes=config.MODEL.NUM_CLASSES,
                                   embed_dim=config.MODEL.SWIN_MOE.EMBED_DIM,
                                   depths=config.MODEL.SWIN_MOE.DEPTHS,
                                   num_heads=config.MODEL.SWIN_MOE.NUM_HEADS,
                                   window_size=config.MODEL.SWIN_MOE.WINDOW_SIZE,
                                   mlp_ratio=config.MODEL.SWIN_MOE.MLP_RATIO,
                                   qkv_bias=config.MODEL.SWIN_MOE.QKV_BIAS,
                                   qk_scale=config.MODEL.SWIN_MOE.QK_SCALE,
                                   drop_rate=config.MODEL.DROP_RATE,
                                   drop_path_rate=config.MODEL.DROP_PATH_RATE,
                                   ape=config.MODEL.SWIN_MOE.APE,
                                   patch_norm=config.MODEL.SWIN_MOE.PATCH_NORM,
                                   mlp_fc2_bias=config.MODEL.SWIN_MOE.MLP_FC2_BIAS,
                                   init_std=config.MODEL.SWIN_MOE.INIT_STD,
                                   use_checkpoint=config.TRAIN.USE_CHECKPOINT,
                                   pretrained_window_sizes=config.MODEL.SWIN_MOE.PRETRAINED_WINDOW_SIZES,
                                   moe_blocks=config.MODEL.SWIN_MOE.MOE_BLOCKS,
                                   num_local_experts=config.MODEL.SWIN_MOE.NUM_LOCAL_EXPERTS,
                                   top_value=config.MODEL.SWIN_MOE.TOP_VALUE,
                                   capacity_factor=config.MODEL.SWIN_MOE.CAPACITY_FACTOR,
                                   cosine_router=config.MODEL.SWIN_MOE.COSINE_ROUTER,
                                   normalize_gate=config.MODEL.SWIN_MOE.NORMALIZE_GATE,
                                   use_bpr=config.MODEL.SWIN_MOE.USE_BPR,
                                   is_gshard_loss=config.MODEL.SWIN_MOE.IS_GSHARD_LOSS,
                                   gate_noise=config.MODEL.SWIN_MOE.GATE_NOISE,
                                   cosine_router_dim=config.MODEL.SWIN_MOE.COSINE_ROUTER_DIM,
                                   cosine_router_init_t=config.MODEL.SWIN_MOE.COSINE_ROUTER_INIT_T,
                                   moe_drop=config.MODEL.SWIN_MOE.MOE_DROP,
                                   aux_loss_weight=config.MODEL.SWIN_MOE.AUX_LOSS_WEIGHT)
    elif model_type == 'swin_mlp':
        model = SwinMLP(img_size=config.DATA.IMG_SIZE,
                        patch_size=config.MODEL.SWIN_MLP.PATCH_SIZE,
                        in_chans=config.MODEL.SWIN_MLP.IN_CHANS,
                        num_classes=config.MODEL.NUM_CLASSES,
                        embed_dim=config.MODEL.SWIN_MLP.EMBED_DIM,
                        depths=config.MODEL.SWIN_MLP.DEPTHS,
                        num_heads=config.MODEL.SWIN_MLP.NUM_HEADS,
                        window_size=config.MODEL.SWIN_MLP.WINDOW_SIZE,
                        mlp_ratio=config.MODEL.SWIN_MLP.MLP_RATIO,
                        drop_rate=config.MODEL.DROP_RATE,
                        drop_path_rate=config.MODEL.DROP_PATH_RATE,
                        ape=config.MODEL.SWIN_MLP.APE,
                        patch_norm=config.MODEL.SWIN_MLP.PATCH_NORM,
                        use_checkpoint=config.TRAIN.USE_CHECKPOINT)
    else:
        raise NotImplementedError(f"Unkown model: {model_type}")

    return model