build.py 6.1 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------

import os
import torch
import numpy as np
import torch.distributed as dist
from torchvision import datasets, transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import Mixup
from timm.data import create_transform

from .cached_image_folder import CachedImageFolder
from .imagenet22k_dataset import IN22KDATASET
from .samplers import SubsetRandomSampler

try:
    from torchvision.transforms import InterpolationMode


    def _pil_interp(method):
        if method == 'bicubic':
            return InterpolationMode.BICUBIC
        elif method == 'lanczos':
            return InterpolationMode.LANCZOS
        elif method == 'hamming':
            return InterpolationMode.HAMMING
        else:
            # default bilinear, do we want to allow nearest?
            return InterpolationMode.BILINEAR


    import timm.data.transforms as timm_transforms

    timm_transforms._pil_interp = _pil_interp
except:
    from timm.data.transforms import _pil_interp


def build_loader(config):
    config.defrost()
    dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config)
    config.freeze()
    print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build train dataset")
    dataset_val, _ = build_dataset(is_train=False, config=config)
    print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset")

    num_tasks = dist.get_world_size()
    global_rank = dist.get_rank()
    if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part':
        indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size())
        sampler_train = SubsetRandomSampler(indices)
    else:
        sampler_train = torch.utils.data.DistributedSampler(
            dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
        )

    if config.TEST.SEQUENTIAL:
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_val = torch.utils.data.distributed.DistributedSampler(
            dataset_val, shuffle=config.TEST.SHUFFLE
        )

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=config.DATA.BATCH_SIZE,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, sampler=sampler_val,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False
    )

    # setup mixup / cutmix
    mixup_fn = None
    mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
    if mixup_active:
        mixup_fn = Mixup(
            mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX,
            prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE,
            label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES)

    return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn


def build_dataset(is_train, config):
    transform = build_transform(is_train, config)
    if config.DATA.DATASET == 'imagenet':
        prefix = 'train' if is_train else 'val'
        if config.DATA.ZIP_MODE:
            ann_file = prefix + "_map.txt"
            prefix = prefix + ".zip@/"
            dataset = CachedImageFolder(config.DATA.DATA_PATH, ann_file, prefix, transform,
                                        cache_mode=config.DATA.CACHE_MODE if is_train else 'part')
        else:
            root = os.path.join(config.DATA.DATA_PATH, prefix)
            dataset = datasets.ImageFolder(root, transform=transform)
        nb_classes = 1000
    elif config.DATA.DATASET == 'imagenet22K':
        prefix = 'ILSVRC2011fall_whole'
        if is_train:
            ann_file = prefix + "_map_train.txt"
        else:
            ann_file = prefix + "_map_val.txt"
        dataset = IN22KDATASET(config.DATA.DATA_PATH, ann_file, transform)
        nb_classes = 21841
    else:
        raise NotImplementedError("We only support ImageNet Now.")

    return dataset, nb_classes


def build_transform(is_train, config):
    resize_im = config.DATA.IMG_SIZE > 32
    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=config.DATA.IMG_SIZE,
            is_training=True,
            color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None,
            auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None,
            re_prob=config.AUG.REPROB,
            re_mode=config.AUG.REMODE,
            re_count=config.AUG.RECOUNT,
            interpolation=config.DATA.INTERPOLATION,
        )
        if not resize_im:
            # replace RandomResizedCropAndInterpolation with
            # RandomCrop
            transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4)
        return transform

    t = []
    if resize_im:
        if config.TEST.CROP:
            size = int((256 / 224) * config.DATA.IMG_SIZE)
            t.append(
                transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)),
                # to maintain same ratio w.r.t. 224 images
            )
            t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
        else:
            t.append(
                transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
                                  interpolation=_pil_interp(config.DATA.INTERPOLATION))
            )

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
    return transforms.Compose(t)