utils.py 9.37 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------

import os
import torch
import torch.distributed as dist
dcuai's avatar
dcuai committed
11
from torch import inf
unknown's avatar
unknown committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221


def load_checkpoint(config, model, optimizer, lr_scheduler, loss_scaler, logger):
    logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
    if config.MODEL.RESUME.startswith('https'):
        checkpoint = torch.hub.load_state_dict_from_url(
            config.MODEL.RESUME, map_location='cpu', check_hash=True)
    else:
        checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
    msg = model.load_state_dict(checkpoint['model'], strict=False)
    logger.info(msg)
    max_accuracy = 0.0
    if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        config.defrost()
        config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
        config.freeze()
        if 'scaler' in checkpoint:
            loss_scaler.load_state_dict(checkpoint['scaler'])
        logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
        if 'max_accuracy' in checkpoint:
            max_accuracy = checkpoint['max_accuracy']

    del checkpoint
    torch.cuda.empty_cache()
    return max_accuracy


def load_pretrained(config, model, logger):
    logger.info(f"==============> Loading weight {config.MODEL.PRETRAINED} for fine-tuning......")
    checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu')
    state_dict = checkpoint['model']

    # delete relative_position_index since we always re-init it
    relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k]
    for k in relative_position_index_keys:
        del state_dict[k]

    # delete relative_coords_table since we always re-init it
    relative_position_index_keys = [k for k in state_dict.keys() if "relative_coords_table" in k]
    for k in relative_position_index_keys:
        del state_dict[k]

    # delete attn_mask since we always re-init it
    attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
    for k in attn_mask_keys:
        del state_dict[k]

    # bicubic interpolate relative_position_bias_table if not match
    relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
    for k in relative_position_bias_table_keys:
        relative_position_bias_table_pretrained = state_dict[k]
        relative_position_bias_table_current = model.state_dict()[k]
        L1, nH1 = relative_position_bias_table_pretrained.size()
        L2, nH2 = relative_position_bias_table_current.size()
        if nH1 != nH2:
            logger.warning(f"Error in loading {k}, passing......")
        else:
            if L1 != L2:
                # bicubic interpolate relative_position_bias_table if not match
                S1 = int(L1 ** 0.5)
                S2 = int(L2 ** 0.5)
                relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
                    relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2),
                    mode='bicubic')
                state_dict[k] = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)

    # bicubic interpolate absolute_pos_embed if not match
    absolute_pos_embed_keys = [k for k in state_dict.keys() if "absolute_pos_embed" in k]
    for k in absolute_pos_embed_keys:
        # dpe
        absolute_pos_embed_pretrained = state_dict[k]
        absolute_pos_embed_current = model.state_dict()[k]
        _, L1, C1 = absolute_pos_embed_pretrained.size()
        _, L2, C2 = absolute_pos_embed_current.size()
        if C1 != C1:
            logger.warning(f"Error in loading {k}, passing......")
        else:
            if L1 != L2:
                S1 = int(L1 ** 0.5)
                S2 = int(L2 ** 0.5)
                absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
                absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
                absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
                    absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
                absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1)
                absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.flatten(1, 2)
                state_dict[k] = absolute_pos_embed_pretrained_resized

    # check classifier, if not match, then re-init classifier to zero
    head_bias_pretrained = state_dict['head.bias']
    Nc1 = head_bias_pretrained.shape[0]
    Nc2 = model.head.bias.shape[0]
    if (Nc1 != Nc2):
        if Nc1 == 21841 and Nc2 == 1000:
            logger.info("loading ImageNet-22K weight to ImageNet-1K ......")
            map22kto1k_path = f'data/map22kto1k.txt'
            with open(map22kto1k_path) as f:
                map22kto1k = f.readlines()
            map22kto1k = [int(id22k.strip()) for id22k in map22kto1k]
            state_dict['head.weight'] = state_dict['head.weight'][map22kto1k, :]
            state_dict['head.bias'] = state_dict['head.bias'][map22kto1k]
        else:
            torch.nn.init.constant_(model.head.bias, 0.)
            torch.nn.init.constant_(model.head.weight, 0.)
            del state_dict['head.weight']
            del state_dict['head.bias']
            logger.warning(f"Error in loading classifier head, re-init classifier head to 0")

    msg = model.load_state_dict(state_dict, strict=False)
    logger.warning(msg)

    logger.info(f"=> loaded successfully '{config.MODEL.PRETRAINED}'")

    del checkpoint
    torch.cuda.empty_cache()


def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger):
    save_state = {'model': model.state_dict(),
                  'optimizer': optimizer.state_dict(),
                  'lr_scheduler': lr_scheduler.state_dict(),
                  'max_accuracy': max_accuracy,
                  'scaler': loss_scaler.state_dict(),
                  'epoch': epoch,
                  'config': config}

    save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
    logger.info(f"{save_path} saving......")
    torch.save(save_state, save_path)
    logger.info(f"{save_path} saved !!!")


def get_grad_norm(parameters, norm_type=2):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    norm_type = float(norm_type)
    total_norm = 0
    for p in parameters:
        param_norm = p.grad.data.norm(norm_type)
        total_norm += param_norm.item() ** norm_type
    total_norm = total_norm ** (1. / norm_type)
    return total_norm


def auto_resume_helper(output_dir):
    checkpoints = os.listdir(output_dir)
    checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
    print(f"All checkpoints founded in {output_dir}: {checkpoints}")
    if len(checkpoints) > 0:
        latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
        print(f"The latest checkpoint founded: {latest_checkpoint}")
        resume_file = latest_checkpoint
    else:
        resume_file = None
    return resume_file


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    rt /= dist.get_world_size()
    return rt


def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
                                                        norm_type).to(device) for p in parameters]), norm_type)
    return total_norm


class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = ampscaler_get_grad_norm(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)