Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
STGCN-PyTorch
Commits
aa58d024
"...pipelines/animatediff/pipeline_animatediff_sdxl.py" did not exist on "a2bc2e14b93b584bea6ba17bdaf7486c6ab808e2"
Commit
aa58d024
authored
Mar 20, 2023
by
unknown
Browse files
Initial add code.
parents
Pipeline
#135
failed with stages
in 0 seconds
Changes
938
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
409 additions
and
0 deletions
+409
-0
configs/_base_/models/tanet_r50.py
configs/_base_/models/tanet_r50.py
+20
-0
configs/_base_/models/tin_r50.py
configs/_base_/models/tin_r50.py
+21
-0
configs/_base_/models/tpn_slowonly_r50.py
configs/_base_/models/tpn_slowonly_r50.py
+40
-0
configs/_base_/models/tpn_tsm_r50.py
configs/_base_/models/tpn_tsm_r50.py
+36
-0
configs/_base_/models/trn_r50.py
configs/_base_/models/trn_r50.py
+22
-0
configs/_base_/models/tsm_mobilenet_v2.py
configs/_base_/models/tsm_mobilenet_v2.py
+22
-0
configs/_base_/models/tsm_r50.py
configs/_base_/models/tsm_r50.py
+21
-0
configs/_base_/models/tsn_r50.py
configs/_base_/models/tsn_r50.py
+19
-0
configs/_base_/models/tsn_r50_audio.py
configs/_base_/models/tsn_r50_audio.py
+13
-0
configs/_base_/models/x3d.py
configs/_base_/models/x3d.py
+14
-0
configs/_base_/schedules/adam_20e.py
configs/_base_/schedules/adam_20e.py
+7
-0
configs/_base_/schedules/sgd_100e.py
configs/_base_/schedules/sgd_100e.py
+10
-0
configs/_base_/schedules/sgd_150e_warmup.py
configs/_base_/schedules/sgd_150e_warmup.py
+13
-0
configs/_base_/schedules/sgd_50e.py
configs/_base_/schedules/sgd_50e.py
+10
-0
configs/_base_/schedules/sgd_tsm_100e.py
configs/_base_/schedules/sgd_tsm_100e.py
+12
-0
configs/_base_/schedules/sgd_tsm_50e.py
configs/_base_/schedules/sgd_tsm_50e.py
+12
-0
configs/_base_/schedules/sgd_tsm_mobilenet_v2_100e.py
configs/_base_/schedules/sgd_tsm_mobilenet_v2_100e.py
+12
-0
configs/_base_/schedules/sgd_tsm_mobilenet_v2_50e.py
configs/_base_/schedules/sgd_tsm_mobilenet_v2_50e.py
+12
-0
configs/detection/_base_/models/slowonly_r50.py
configs/detection/_base_/models/slowonly_r50.py
+43
-0
configs/detection/_base_/models/slowonly_r50_nl.py
configs/detection/_base_/models/slowonly_r50_nl.py
+50
-0
No files found.
configs/_base_/models/tanet_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'TANet'
,
pretrained
=
'torchvision://resnet50'
,
depth
=
50
,
num_segments
=
8
,
tam_cfg
=
dict
()),
cls_head
=
dict
(
type
=
'TSMHead'
,
num_classes
=
400
,
in_channels
=
2048
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.5
,
init_std
=
0.001
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/models/tin_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'ResNetTIN'
,
pretrained
=
'torchvision://resnet50'
,
depth
=
50
,
norm_eval
=
False
,
shift_div
=
4
),
cls_head
=
dict
(
type
=
'TSMHead'
,
num_classes
=
400
,
in_channels
=
2048
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.5
,
init_std
=
0.001
,
is_shift
=
False
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
None
))
configs/_base_/models/tpn_slowonly_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer3D'
,
backbone
=
dict
(
type
=
'ResNet3dSlowOnly'
,
depth
=
50
,
pretrained
=
'torchvision://resnet50'
,
lateral
=
False
,
out_indices
=
(
2
,
3
),
conv1_kernel
=
(
1
,
7
,
7
),
conv1_stride_t
=
1
,
pool1_stride_t
=
1
,
inflate
=
(
0
,
0
,
1
,
1
),
norm_eval
=
False
),
neck
=
dict
(
type
=
'TPN'
,
in_channels
=
(
1024
,
2048
),
out_channels
=
1024
,
spatial_modulation_cfg
=
dict
(
in_channels
=
(
1024
,
2048
),
out_channels
=
2048
),
temporal_modulation_cfg
=
dict
(
downsample_scales
=
(
8
,
8
)),
upsample_cfg
=
dict
(
scale_factor
=
(
1
,
1
,
1
)),
downsample_cfg
=
dict
(
downsample_scale
=
(
1
,
1
,
1
)),
level_fusion_cfg
=
dict
(
in_channels
=
(
1024
,
1024
),
mid_channels
=
(
1024
,
1024
),
out_channels
=
2048
,
downsample_scales
=
((
1
,
1
,
1
),
(
1
,
1
,
1
))),
aux_head_cfg
=
dict
(
out_channels
=
400
,
loss_weight
=
0.5
)),
cls_head
=
dict
(
type
=
'TPNHead'
,
num_classes
=
400
,
in_channels
=
2048
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.5
,
init_std
=
0.01
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/models/tpn_tsm_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'ResNetTSM'
,
pretrained
=
'torchvision://resnet50'
,
depth
=
50
,
out_indices
=
(
2
,
3
),
norm_eval
=
False
,
shift_div
=
8
),
neck
=
dict
(
type
=
'TPN'
,
in_channels
=
(
1024
,
2048
),
out_channels
=
1024
,
spatial_modulation_cfg
=
dict
(
in_channels
=
(
1024
,
2048
),
out_channels
=
2048
),
temporal_modulation_cfg
=
dict
(
downsample_scales
=
(
8
,
8
)),
upsample_cfg
=
dict
(
scale_factor
=
(
1
,
1
,
1
)),
downsample_cfg
=
dict
(
downsample_scale
=
(
1
,
1
,
1
)),
level_fusion_cfg
=
dict
(
in_channels
=
(
1024
,
1024
),
mid_channels
=
(
1024
,
1024
),
out_channels
=
2048
,
downsample_scales
=
((
1
,
1
,
1
),
(
1
,
1
,
1
))),
aux_head_cfg
=
dict
(
out_channels
=
174
,
loss_weight
=
0.5
)),
cls_head
=
dict
(
type
=
'TPNHead'
,
num_classes
=
174
,
in_channels
=
2048
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.5
,
init_std
=
0.01
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
,
fcn_test
=
True
))
configs/_base_/models/trn_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'ResNet'
,
pretrained
=
'torchvision://resnet50'
,
depth
=
50
,
norm_eval
=
False
,
partial_bn
=
True
),
cls_head
=
dict
(
type
=
'TRNHead'
,
num_classes
=
400
,
in_channels
=
2048
,
num_segments
=
8
,
spatial_type
=
'avg'
,
relation_type
=
'TRNMultiScale'
,
hidden_dim
=
256
,
dropout_ratio
=
0.8
,
init_std
=
0.001
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/models/tsm_mobilenet_v2.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'MobileNetV2TSM'
,
shift_div
=
8
,
num_segments
=
8
,
is_shift
=
True
,
pretrained
=
'mmcls://mobilenet_v2'
),
cls_head
=
dict
(
type
=
'TSMHead'
,
num_segments
=
8
,
num_classes
=
400
,
in_channels
=
1280
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.5
,
init_std
=
0.001
,
is_shift
=
True
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/models/tsm_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'ResNetTSM'
,
pretrained
=
'torchvision://resnet50'
,
depth
=
50
,
norm_eval
=
False
,
shift_div
=
8
),
cls_head
=
dict
(
type
=
'TSMHead'
,
num_classes
=
400
,
in_channels
=
2048
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.5
,
init_std
=
0.001
,
is_shift
=
True
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/models/tsn_r50.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer2D'
,
backbone
=
dict
(
type
=
'ResNet'
,
pretrained
=
'torchvision://resnet50'
,
depth
=
50
,
norm_eval
=
False
),
cls_head
=
dict
(
type
=
'TSNHead'
,
num_classes
=
400
,
in_channels
=
2048
,
spatial_type
=
'avg'
,
consensus
=
dict
(
type
=
'AvgConsensus'
,
dim
=
1
),
dropout_ratio
=
0.4
,
init_std
=
0.01
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
None
))
configs/_base_/models/tsn_r50_audio.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'AudioRecognizer'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
in_channels
=
1
,
norm_eval
=
False
),
cls_head
=
dict
(
type
=
'AudioTSNHead'
,
num_classes
=
400
,
in_channels
=
2048
,
dropout_ratio
=
0.5
,
init_std
=
0.01
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/models/x3d.py
0 → 100644
View file @
aa58d024
# model settings
model
=
dict
(
type
=
'Recognizer3D'
,
backbone
=
dict
(
type
=
'X3D'
,
gamma_w
=
1
,
gamma_b
=
2.25
,
gamma_d
=
2.2
),
cls_head
=
dict
(
type
=
'X3DHead'
,
in_channels
=
432
,
num_classes
=
400
,
spatial_type
=
'avg'
,
dropout_ratio
=
0.5
,
fc1_bias
=
False
),
# model training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
average_clips
=
'prob'
))
configs/_base_/schedules/adam_20e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'Adam'
,
lr
=
0.01
,
weight_decay
=
0.00001
)
# this lr is used for 1 gpus
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
10
)
total_epochs
=
20
configs/_base_/schedules/sgd_100e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
# this lr is used for 8 gpus
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
40
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
40
,
80
])
total_epochs
=
100
configs/_base_/schedules/sgd_150e_warmup.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
# this lr is used for 8 gpus
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
40
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
90
,
130
],
warmup
=
'linear'
,
warmup_by_epoch
=
True
,
warmup_iters
=
10
)
total_epochs
=
150
configs/_base_/schedules/sgd_50e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
# this lr is used for 8 gpus
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
40
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
20
,
40
])
total_epochs
=
50
configs/_base_/schedules/sgd_tsm_100e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
constructor
=
'TSMOptimizerConstructor'
,
paramwise_cfg
=
dict
(
fc_lr5
=
True
),
lr
=
0.01
,
# this lr is used for 8 gpus
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
20
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
40
,
80
])
total_epochs
=
100
configs/_base_/schedules/sgd_tsm_50e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
constructor
=
'TSMOptimizerConstructor'
,
paramwise_cfg
=
dict
(
fc_lr5
=
True
),
lr
=
0.01
,
# this lr is used for 8 gpus
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
20
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
20
,
40
])
total_epochs
=
50
configs/_base_/schedules/sgd_tsm_mobilenet_v2_100e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
constructor
=
'TSMOptimizerConstructor'
,
paramwise_cfg
=
dict
(
fc_lr5
=
True
),
lr
=
0.01
,
# this lr is used for 8 gpus
momentum
=
0.9
,
weight_decay
=
0.00002
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
20
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
40
,
80
])
total_epochs
=
100
configs/_base_/schedules/sgd_tsm_mobilenet_v2_50e.py
0 → 100644
View file @
aa58d024
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
constructor
=
'TSMOptimizerConstructor'
,
paramwise_cfg
=
dict
(
fc_lr5
=
True
),
lr
=
0.01
,
# this lr is used for 8 gpus
momentum
=
0.9
,
weight_decay
=
0.00002
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
20
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
20
,
40
])
total_epochs
=
50
configs/detection/_base_/models/slowonly_r50.py
0 → 100644
View file @
aa58d024
# model setting
model
=
dict
(
type
=
'FastRCNN'
,
backbone
=
dict
(
type
=
'ResNet3dSlowOnly'
,
depth
=
50
,
pretrained
=
None
,
pretrained2d
=
False
,
lateral
=
False
,
num_stages
=
4
,
conv1_kernel
=
(
1
,
7
,
7
),
conv1_stride_t
=
1
,
pool1_stride_t
=
1
,
spatial_strides
=
(
1
,
2
,
2
,
1
)),
roi_head
=
dict
(
type
=
'AVARoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor3D'
,
roi_layer_type
=
'RoIAlign'
,
output_size
=
8
,
with_temporal_pool
=
True
),
bbox_head
=
dict
(
type
=
'BBoxHeadAVA'
,
in_channels
=
2048
,
num_classes
=
81
,
multilabel
=
True
,
dropout_ratio
=
0.5
)),
train_cfg
=
dict
(
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssignerAVA'
,
pos_iou_thr
=
0.9
,
neg_iou_thr
=
0.9
,
min_pos_iou
=
0.9
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
32
,
pos_fraction
=
1
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=
1.0
,
debug
=
False
)),
test_cfg
=
dict
(
rcnn
=
dict
(
action_thr
=
0.002
)))
configs/detection/_base_/models/slowonly_r50_nl.py
0 → 100644
View file @
aa58d024
# model setting
model
=
dict
(
type
=
'FastRCNN'
,
backbone
=
dict
(
type
=
'ResNet3dSlowOnly'
,
depth
=
50
,
pretrained
=
None
,
pretrained2d
=
False
,
lateral
=
False
,
num_stages
=
4
,
conv1_kernel
=
(
1
,
7
,
7
),
conv1_stride_t
=
1
,
pool1_stride_t
=
1
,
spatial_strides
=
(
1
,
2
,
2
,
1
),
norm_cfg
=
dict
(
type
=
'BN3d'
,
requires_grad
=
True
),
non_local
=
((
0
,
0
,
0
),
(
1
,
0
,
1
,
0
),
(
1
,
0
,
1
,
0
,
1
,
0
),
(
0
,
0
,
0
)),
non_local_cfg
=
dict
(
sub_sample
=
True
,
use_scale
=
True
,
norm_cfg
=
dict
(
type
=
'BN3d'
,
requires_grad
=
True
),
mode
=
'embedded_gaussian'
)),
roi_head
=
dict
(
type
=
'AVARoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor3D'
,
roi_layer_type
=
'RoIAlign'
,
output_size
=
8
,
with_temporal_pool
=
True
),
bbox_head
=
dict
(
type
=
'BBoxHeadAVA'
,
in_channels
=
2048
,
num_classes
=
81
,
multilabel
=
True
,
dropout_ratio
=
0.5
)),
train_cfg
=
dict
(
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssignerAVA'
,
pos_iou_thr
=
0.9
,
neg_iou_thr
=
0.9
,
min_pos_iou
=
0.9
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
32
,
pos_fraction
=
1
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=
1.0
,
debug
=
False
)),
test_cfg
=
dict
(
rcnn
=
dict
(
action_thr
=
0.002
)))
Prev
1
2
3
4
5
6
…
47
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment