"src/fastertransformer/models/llama/LlamaV2.cc" did not exist on "720fc533da804ac3f46ee938864403e51fcd9fa7"
base.py 3.41 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

import mmcv
import numpy as np


class BaseTestLoading:

    @classmethod
    def setup_class(cls):
        cls.data_prefix = osp.normpath(
            osp.join(osp.dirname(__file__), '../../../data'))
        cls.img_path = osp.join(cls.data_prefix, 'test.jpg')
        cls.video_path = osp.join(cls.data_prefix, 'test.mp4')
        cls.wav_path = osp.join(cls.data_prefix, 'test.wav')
        cls.audio_spec_path = osp.join(cls.data_prefix, 'test.npy')
        cls.img_dir = osp.join(cls.data_prefix, 'imgs')
        cls.raw_feature_dir = osp.join(cls.data_prefix, 'activitynet_features')
        cls.bsp_feature_dir = osp.join(cls.data_prefix, 'bsp_features')
        cls.proposals_dir = osp.join(cls.data_prefix, 'proposals')

        cls.total_frames = 5
        cls.filename_tmpl = 'img_{:05}.jpg'
        cls.flow_filename_tmpl = '{}_{:05d}.jpg'
        video_total_frames = len(mmcv.VideoReader(cls.video_path))
        cls.audio_total_frames = video_total_frames

        cls.video_results = dict(
            filename=cls.video_path,
            label=1,
            total_frames=video_total_frames,
            start_index=0)
        cls.audio_results = dict(
            audios=np.random.randn(1280, ),
            audio_path=cls.wav_path,
            total_frames=cls.audio_total_frames,
            label=1,
            start_index=0)
        cls.audio_feature_results = dict(
            audios=np.random.randn(128, 80),
            audio_path=cls.audio_spec_path,
            total_frames=cls.audio_total_frames,
            label=1,
            start_index=0)
        cls.frame_results = dict(
            frame_dir=cls.img_dir,
            total_frames=cls.total_frames,
            filename_tmpl=cls.filename_tmpl,
            start_index=1,
            modality='RGB',
            offset=0,
            label=1)
        cls.flow_frame_results = dict(
            frame_dir=cls.img_dir,
            total_frames=cls.total_frames,
            filename_tmpl=cls.flow_filename_tmpl,
            modality='Flow',
            offset=0,
            label=1)
        cls.action_results = dict(
            video_name='v_test1',
            data_prefix=cls.raw_feature_dir,
            temporal_scale=5,
            boundary_ratio=0.1,
            duration_second=10,
            duration_frame=10,
            feature_frame=8,
            annotations=[{
                'segment': [3.0, 5.0],
                'label': 'Rock climbing'
            }])
        from mmaction.datasets.ssn_dataset import SSNInstance
        cls.proposal_results = dict(
            frame_dir=cls.img_dir,
            video_id='imgs',
            total_frames=cls.total_frames,
            filename_tmpl=cls.filename_tmpl,
            start_index=1,
            out_proposals=[[['imgs', SSNInstance(1, 4, 10, 1, 1, 1)], 0],
                           [['imgs', SSNInstance(2, 5, 10, 2, 1, 1)], 0]])

        cls.ava_results = dict(
            fps=30, timestamp=902, timestamp_start=840, shot_info=(0, 27000))

        cls.hvu_label_example1 = dict(
            categories=['action', 'object', 'scene', 'concept'],
            category_nums=[2, 5, 3, 2],
            label=dict(action=[0], object=[2, 3], scene=[0, 1]))
        cls.hvu_label_example2 = dict(
            categories=['action', 'object', 'scene', 'concept'],
            category_nums=[2, 5, 3, 2],
            label=dict(action=[1], scene=[1, 2], concept=[1]))