test_ssn_dataset.py 6.57 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
from mmcv.utils import assert_dict_has_keys

from mmaction.datasets import SSNDataset
from .base import BaseTestDataset


class TestSSNDataset(BaseTestDataset):

    def test_proposal_pipeline(self):
        target_keys = [
            'frame_dir', 'video_id', 'total_frames', 'gts', 'proposals',
            'filename_tmpl', 'modality', 'out_proposals', 'reg_targets',
            'proposal_scale_factor', 'proposal_labels', 'proposal_type',
            'start_index'
        ]

        # SSN Dataset not in test mode
        proposal_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix)
        result = proposal_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        # SSN Dataset with random sampling proposals
        proposal_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix,
            video_centric=False)
        result = proposal_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        target_keys = [
            'frame_dir', 'video_id', 'total_frames', 'gts', 'proposals',
            'filename_tmpl', 'modality', 'relative_proposal_list',
            'scale_factor_list', 'proposal_tick_list', 'reg_norm_consts',
            'start_index'
        ]

        # SSN Dataset in test mode
        proposal_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_test_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix,
            test_mode=True)
        result = proposal_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

    def test_ssn_dataset(self):
        # test ssn dataset
        ssn_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix)
        ssn_infos = ssn_dataset.video_infos
        assert ssn_infos[0]['video_id'] == 'imgs'
        assert ssn_infos[0]['total_frames'] == 5

        # test ssn dataset with verbose
        ssn_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix,
            verbose=True)
        ssn_infos = ssn_dataset.video_infos
        assert ssn_infos[0]['video_id'] == 'imgs'
        assert ssn_infos[0]['total_frames'] == 5

        # test ssn dataset with normalized proposal file
        with pytest.raises(Exception):
            ssn_dataset = SSNDataset(
                self.proposal_norm_ann_file,
                self.proposal_pipeline,
                self.proposal_train_cfg,
                self.proposal_test_cfg,
                data_prefix=self.data_prefix)
            ssn_infos = ssn_dataset.video_infos

        # test ssn dataset with reg_normalize_constants
        ssn_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix,
            reg_normalize_constants=[[[-0.0603, 0.0325], [0.0752, 0.1596]]])
        ssn_infos = ssn_dataset.video_infos
        assert ssn_infos[0]['video_id'] == 'imgs'
        assert ssn_infos[0]['total_frames'] == 5

        # test error case
        with pytest.raises(TypeError):
            ssn_dataset = SSNDataset(
                self.proposal_ann_file,
                self.proposal_pipeline,
                self.proposal_train_cfg,
                self.proposal_test_cfg,
                data_prefix=self.data_prefix,
                aug_ratio=('error', 'error'))
            ssn_infos = ssn_dataset.video_infos

    def test_ssn_evaluate(self):
        ssn_dataset = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg,
            data_prefix=self.data_prefix)
        ssn_dataset_topall = SSNDataset(
            self.proposal_ann_file,
            self.proposal_pipeline,
            self.proposal_train_cfg,
            self.proposal_test_cfg_topall,
            data_prefix=self.data_prefix)

        with pytest.raises(TypeError):
            # results must be a list
            ssn_dataset.evaluate('0.5')

        with pytest.raises(AssertionError):
            # The length of results must be equal to the dataset len
            ssn_dataset.evaluate([0] * 5)

        with pytest.raises(KeyError):
            # unsupported metric
            ssn_dataset.evaluate([0] * len(ssn_dataset), metrics='iou')

        # evaluate mAP metric
        results_relative_proposal_list = np.random.randn(16, 2)
        results_activity_scores = np.random.randn(16, 21)
        results_completeness_scores = np.random.randn(16, 20)
        results_bbox_preds = np.random.randn(16, 20, 2)
        results = [
            dict(
                relative_proposal_list=results_relative_proposal_list,
                activity_scores=results_activity_scores,
                completeness_scores=results_completeness_scores,
                bbox_preds=results_bbox_preds)
        ]
        eval_result = ssn_dataset.evaluate(results, metrics=['mAP'])
        assert set(eval_result) == set([
            'mAP@0.10', 'mAP@0.20', 'mAP@0.30', 'mAP@0.40', 'mAP@0.50',
            'mAP@0.50', 'mAP@0.60', 'mAP@0.70', 'mAP@0.80', 'mAP@0.90'
        ])

        # evaluate mAP metric without filtering topk
        results_relative_proposal_list = np.random.randn(16, 2)
        results_activity_scores = np.random.randn(16, 21)
        results_completeness_scores = np.random.randn(16, 20)
        results_bbox_preds = np.random.randn(16, 20, 2)
        results = [
            dict(
                relative_proposal_list=results_relative_proposal_list,
                activity_scores=results_activity_scores,
                completeness_scores=results_completeness_scores,
                bbox_preds=results_bbox_preds)
        ]
        eval_result = ssn_dataset_topall.evaluate(results, metrics=['mAP'])
        assert set(eval_result) == set([
            'mAP@0.10', 'mAP@0.20', 'mAP@0.30', 'mAP@0.40', 'mAP@0.50',
            'mAP@0.50', 'mAP@0.60', 'mAP@0.70', 'mAP@0.80', 'mAP@0.90'
        ])