test_rawframe_dataset.py 5.98 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

import numpy as np
import pytest
from mmcv.utils import assert_dict_has_keys

from mmaction.datasets import RawframeDataset
from .base import BaseTestDataset


class TestRawframDataset(BaseTestDataset):

    def test_rawframe_dataset(self):
        rawframe_dataset = RawframeDataset(self.frame_ann_file,
                                           self.frame_pipeline,
                                           self.data_prefix)
        rawframe_infos = rawframe_dataset.video_infos
        frame_dir = osp.join(self.data_prefix, 'imgs')
        assert rawframe_infos == [
            dict(frame_dir=frame_dir, total_frames=5, label=127)
        ] * 2
        assert rawframe_dataset.start_index == 1

    def test_rawframe_dataset_with_offset(self):
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file_with_offset,
            self.frame_pipeline,
            self.data_prefix,
            with_offset=True)
        rawframe_infos = rawframe_dataset.video_infos
        frame_dir = osp.join(self.data_prefix, 'imgs')
        assert rawframe_infos == [
            dict(frame_dir=frame_dir, offset=2, total_frames=5, label=127)
        ] * 2
        assert rawframe_dataset.start_index == 1

    def test_rawframe_dataset_multi_label(self):
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file_multi_label,
            self.frame_pipeline,
            self.data_prefix,
            multi_class=True,
            num_classes=100)
        rawframe_infos = rawframe_dataset.video_infos
        frame_dir = osp.join(self.data_prefix, 'imgs')
        label0 = [1]
        label1 = [3, 5]
        labels = [label0, label1]
        for info, label in zip(rawframe_infos, labels):
            assert info['frame_dir'] == frame_dir
            assert info['total_frames'] == 5
            assert set(info['label']) == set(label)
        assert rawframe_dataset.start_index == 1

    def test_dataset_realpath(self):
        dataset = RawframeDataset(self.frame_ann_file, self.frame_pipeline,
                                  '.')
        assert dataset.data_prefix == osp.realpath('.')
        dataset = RawframeDataset(self.frame_ann_file, self.frame_pipeline,
                                  's3://good')
        assert dataset.data_prefix == 's3://good'

        dataset = RawframeDataset(self.frame_ann_file, self.frame_pipeline)
        assert dataset.data_prefix is None
        assert dataset.video_infos[0]['frame_dir'] == 'imgs'

    def test_rawframe_pipeline(self):
        target_keys = [
            'frame_dir', 'total_frames', 'label', 'filename_tmpl',
            'start_index', 'modality'
        ]

        # RawframeDataset not in test mode
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file,
            self.frame_pipeline,
            self.data_prefix,
            test_mode=False)
        result = rawframe_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        # RawframeDataset in multi-class tasks
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file,
            self.frame_pipeline,
            self.data_prefix,
            multi_class=True,
            num_classes=400,
            test_mode=False)
        result = rawframe_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        # RawframeDataset with offset
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file_with_offset,
            self.frame_pipeline,
            self.data_prefix,
            with_offset=True,
            num_classes=400,
            test_mode=False)
        result = rawframe_dataset[0]
        assert assert_dict_has_keys(result, target_keys + ['offset'])

        # RawframeDataset in test mode
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file,
            self.frame_pipeline,
            self.data_prefix,
            test_mode=True)
        result = rawframe_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        # RawframeDataset in multi-class tasks in test mode
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file,
            self.frame_pipeline,
            self.data_prefix,
            multi_class=True,
            num_classes=400,
            test_mode=True)
        result = rawframe_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        # RawframeDataset with offset
        rawframe_dataset = RawframeDataset(
            self.frame_ann_file_with_offset,
            self.frame_pipeline,
            self.data_prefix,
            with_offset=True,
            num_classes=400,
            test_mode=True)
        result = rawframe_dataset[0]
        assert assert_dict_has_keys(result, target_keys + ['offset'])

    def test_rawframe_evaluate(self):
        rawframe_dataset = RawframeDataset(self.frame_ann_file,
                                           self.frame_pipeline,
                                           self.data_prefix)

        with pytest.raises(TypeError):
            # results must be a list
            rawframe_dataset.evaluate('0.5')

        with pytest.raises(AssertionError):
            # The length of results must be equal to the dataset len
            rawframe_dataset.evaluate([0] * 5)

        with pytest.raises(TypeError):
            # topk must be int or tuple of int
            rawframe_dataset.evaluate(
                [0] * len(rawframe_dataset),
                metric_options=dict(top_k_accuracy=dict(topk=1.)))

        with pytest.raises(KeyError):
            # unsupported metric
            rawframe_dataset.evaluate(
                [0] * len(rawframe_dataset), metrics='iou')

        # evaluate top_k_accuracy and mean_class_accuracy metric
        results = [np.array([0.1, 0.5, 0.4])] * 2
        eval_result = rawframe_dataset.evaluate(
            results, metrics=['top_k_accuracy', 'mean_class_accuracy'])
        assert set(eval_result) == set(
            ['top1_acc', 'top5_acc', 'mean_class_accuracy'])