test_ava_dataset.py 8.98 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

import mmcv
import numpy as np
from mmcv.utils import assert_dict_has_keys
from numpy.testing import assert_array_almost_equal, assert_array_equal

from mmaction.datasets import AVADataset


class TestAVADataset:

    @classmethod
    def setup_class(cls):
        cls.data_prefix = osp.normpath(
            osp.join(osp.dirname(__file__), '../../data', 'ava_dataset'))
        cls.label_file = osp.join(cls.data_prefix, 'action_list.txt')
        cls.ann_file = osp.join(cls.data_prefix, 'ava_sample.csv')
        cls.exclude_file = osp.join(cls.data_prefix,
                                    'ava_excluded_timestamps_sample.csv')
        cls.proposal_file = osp.join(cls.data_prefix,
                                     'ava_proposals_sample.pkl')
        cls.pipeline = [
            dict(dict(type='SampleAVAFrames', clip_len=32, frame_interval=2))
        ]
        cls.proposal = mmcv.load(cls.proposal_file)

    def test_ava_dataset(self):
        target_keys = [
            'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info',
            'fps', 'ann'
        ]
        ann_keys = ['gt_labels', 'gt_bboxes', 'entity_ids']
        pkl_keys = ['0f39OWEqJ24,0902', '0f39OWEqJ24,0903', '_-Z6wFjXtGQ,0902']

        ava_dataset = AVADataset(
            self.ann_file,
            self.exclude_file,
            self.pipeline,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)
        ava_infos = ava_dataset.video_infos
        assert assert_dict_has_keys(ava_dataset.proposals, pkl_keys)

        assert assert_dict_has_keys(ava_infos[0], target_keys)
        assert assert_dict_has_keys(ava_infos[0]['ann'], ann_keys)
        assert len(ava_infos) == 1
        assert ava_infos[0]['frame_dir'] == osp.join(self.data_prefix,
                                                     '0f39OWEqJ24')
        assert ava_infos[0]['video_id'] == '0f39OWEqJ24'
        assert ava_infos[0]['timestamp'] == 902
        assert ava_infos[0]['img_key'] == '0f39OWEqJ24,0902'
        assert ava_infos[0]['shot_info'] == (0, 27000)
        assert ava_infos[0]['fps'] == 30
        assert len(ava_infos[0]['ann']) == 3
        target_labels = np.array([12, 17, 79])
        labels = np.zeros([81])
        labels[target_labels] = 1.
        target_labels = labels[None, ...]
        assert_array_equal(ava_infos[0]['ann']['gt_labels'], target_labels)
        assert_array_equal(ava_infos[0]['ann']['gt_bboxes'],
                           np.array([[0.031, 0.162, 0.67, 0.995]]))
        assert_array_equal(ava_infos[0]['ann']['entity_ids'], np.array([0]))

        # custom classes
        ava_dataset = AVADataset(
            self.ann_file,
            self.exclude_file,
            self.pipeline,
            label_file=self.label_file,
            custom_classes=[17, 79],
            num_classes=3,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)
        ava_infos = ava_dataset.video_infos
        target_labels = np.array([1, 2])
        labels = np.zeros([3])
        labels[target_labels] = 1.
        target_labels = labels[None, ...]
        assert_array_equal(ava_infos[0]['ann']['gt_labels'], target_labels)
        assert_array_equal(ava_infos[0]['ann']['gt_bboxes'],
                           np.array([[0.031, 0.162, 0.67, 0.995]]))
        assert_array_equal(ava_infos[0]['ann']['entity_ids'], np.array([0]))

        ava_dataset = AVADataset(
            self.ann_file,
            None,
            self.pipeline,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)
        ava_infos = ava_dataset.video_infos
        assert len(ava_infos) == 3

        ava_dataset = AVADataset(
            self.ann_file,
            None,
            self.pipeline,
            test_mode=True,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)
        ava_infos = ava_dataset.video_infos
        assert len(ava_infos) == 3

        ava_dataset = AVADataset(
            self.ann_file,
            None,
            self.pipeline,
            test_mode=True,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)

    def test_ava_pipeline(self):
        target_keys = [
            'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info',
            'fps', 'filename_tmpl', 'modality', 'start_index',
            'timestamp_start', 'timestamp_end', 'proposals', 'scores',
            'frame_inds', 'clip_len', 'frame_interval', 'gt_labels',
            'gt_bboxes', 'entity_ids'
        ]

        ava_dataset = AVADataset(
            self.ann_file,
            self.exclude_file,
            self.pipeline,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)
        result = ava_dataset[0]
        assert assert_dict_has_keys(result, target_keys)

        assert result['filename_tmpl'] == 'img_{:05}.jpg'
        assert result['modality'] == 'RGB'
        assert result['start_index'] == 0
        assert result['timestamp_start'] == 900
        assert result['timestamp_end'] == 1800
        assert_array_equal(result['proposals'],
                           np.array([[0.011, 0.157, 0.655, 0.983]]))
        assert_array_equal(result['scores'], np.array([0.998163]))

        assert result['clip_len'] == 32
        assert result['frame_interval'] == 2
        assert len(result['frame_inds']) == 32

        ava_dataset = AVADataset(
            self.ann_file,
            None,
            self.pipeline,
            test_mode=True,
            data_prefix=self.data_prefix,
            proposal_file=self.proposal_file)
        # Try to get a sample
        result = ava_dataset[0]
        assert result['filename_tmpl'] == 'img_{:05}.jpg'
        assert result['modality'] == 'RGB'
        assert result['start_index'] == 0
        assert result['timestamp_start'] == 900
        assert result['timestamp_end'] == 1800

    @staticmethod
    def test_ava_evaluate():
        data_prefix = osp.normpath(
            osp.join(osp.dirname(__file__), '../../data', 'eval_detection'))
        ann_file = osp.join(data_prefix, 'gt.csv')
        label_file = osp.join(data_prefix, 'action_list.txt')

        ava_dataset = AVADataset(
            ann_file, None, [], label_file=label_file, num_classes=4)
        fake_result = [[
            np.array([[0.362, 0.156, 0.969, 0.666, 0.106],
                      [0.442, 0.083, 0.721, 0.947, 0.162]]),
            np.array([[0.288, 0.365, 0.766, 0.551, 0.706],
                      [0.178, 0.296, 0.707, 0.995, 0.223]]),
            np.array([[0.417, 0.167, 0.843, 0.939, 0.015],
                      [0.35, 0.421, 0.57, 0.689, 0.427]])
        ],
                       [
                           np.array([[0.256, 0.338, 0.726, 0.799, 0.563],
                                     [0.071, 0.256, 0.64, 0.75, 0.297]]),
                           np.array([[0.326, 0.036, 0.513, 0.991, 0.405],
                                     [0.351, 0.035, 0.729, 0.936, 0.945]]),
                           np.array([[0.051, 0.005, 0.975, 0.942, 0.424],
                                     [0.347, 0.05, 0.97, 0.944, 0.396]])
                       ],
                       [
                           np.array([[0.39, 0.087, 0.833, 0.616, 0.447],
                                     [0.461, 0.212, 0.627, 0.527, 0.036]]),
                           np.array([[0.022, 0.394, 0.93, 0.527, 0.109],
                                     [0.208, 0.462, 0.874, 0.948, 0.954]]),
                           np.array([[0.206, 0.456, 0.564, 0.725, 0.685],
                                     [0.106, 0.445, 0.782, 0.673, 0.367]])
                       ]]
        res = ava_dataset.evaluate(fake_result)
        assert_array_almost_equal(res['mAP@0.5IOU'], 0.027777778)

        # custom classes
        ava_dataset = AVADataset(
            ann_file,
            None, [],
            label_file=label_file,
            num_classes=3,
            custom_classes=[1, 3])
        fake_result = [[
            np.array([[0.362, 0.156, 0.969, 0.666, 0.106],
                      [0.442, 0.083, 0.721, 0.947, 0.162]]),
            np.array([[0.417, 0.167, 0.843, 0.939, 0.015],
                      [0.35, 0.421, 0.57, 0.689, 0.427]])
        ],
                       [
                           np.array([[0.256, 0.338, 0.726, 0.799, 0.563],
                                     [0.071, 0.256, 0.64, 0.75, 0.297]]),
                           np.array([[0.051, 0.005, 0.975, 0.942, 0.424],
                                     [0.347, 0.05, 0.97, 0.944, 0.396]])
                       ],
                       [
                           np.array([[0.39, 0.087, 0.833, 0.616, 0.447],
                                     [0.461, 0.212, 0.627, 0.527, 0.036]]),
                           np.array([[0.206, 0.456, 0.564, 0.725, 0.685],
                                     [0.106, 0.445, 0.782, 0.673, 0.367]])
                       ]]
        res = ava_dataset.evaluate(fake_result)
        assert_array_almost_equal(res['mAP@0.5IOU'], 0.04166667)