"megatron/training/tokenizer/bert_tokenization.py" did not exist on "8b1da95af98f0f8140618a2b8d4af815e5c37bdf"
ava_utils.py 8.26 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) OpenMMLab. All rights reserved.
# This piece of code is directly adapted from ActivityNet official repo
# https://github.com/activitynet/ActivityNet/blob/master/
# Evaluation/get_ava_performance.py. Some unused codes are removed.
import csv
import logging
import time
from collections import defaultdict

import numpy as np

from .ava_evaluation import object_detection_evaluation as det_eval
from .ava_evaluation import standard_fields


def det2csv(dataset, results, custom_classes):
    csv_results = []
    for idx in range(len(dataset)):
        video_id = dataset.video_infos[idx]['video_id']
        timestamp = dataset.video_infos[idx]['timestamp']
        result = results[idx]
        for label, _ in enumerate(result):
            for bbox in result[label]:
                bbox_ = tuple(bbox.tolist())
                if custom_classes is not None:
                    actual_label = custom_classes[label + 1]
                else:
                    actual_label = label + 1
                csv_results.append((
                    video_id,
                    timestamp,
                ) + bbox_[:4] + (actual_label, ) + bbox_[4:])
    return csv_results


# results is organized by class
def results2csv(dataset, results, out_file, custom_classes=None):
    if isinstance(results[0], list):
        csv_results = det2csv(dataset, results, custom_classes)

    # save space for float
    def to_str(item):
        if isinstance(item, float):
            return f'{item:.3f}'
        return str(item)

    with open(out_file, 'w') as f:
        for csv_result in csv_results:
            f.write(','.join(map(to_str, csv_result)))
            f.write('\n')


def print_time(message, start):
    print('==> %g seconds to %s' % (time.time() - start, message), flush=True)


def make_image_key(video_id, timestamp):
    """Returns a unique identifier for a video id & timestamp."""
    return f'{video_id},{int(timestamp):04d}'


def read_csv(csv_file, class_whitelist=None):
    """Loads boxes and class labels from a CSV file in the AVA format.

    CSV file format described at https://research.google.com/ava/download.html.

    Args:
        csv_file: A file object.
        class_whitelist: If provided, boxes corresponding to (integer) class
        labels not in this set are skipped.

    Returns:
        boxes: A dictionary mapping each unique image key (string) to a list of
        boxes, given as coordinates [y1, x1, y2, x2].
        labels: A dictionary mapping each unique image key (string) to a list
        of integer class labels, matching the corresponding box in `boxes`.
        scores: A dictionary mapping each unique image key (string) to a list
        of score values labels, matching the corresponding label in `labels`.
        If scores are not provided in the csv, then they will default to 1.0.
    """
    start = time.time()
    entries = defaultdict(list)
    boxes = defaultdict(list)
    labels = defaultdict(list)
    scores = defaultdict(list)
    reader = csv.reader(csv_file)
    for row in reader:
        assert len(row) in [7, 8], 'Wrong number of columns: ' + row
        image_key = make_image_key(row[0], row[1])
        x1, y1, x2, y2 = [float(n) for n in row[2:6]]
        action_id = int(row[6])
        if class_whitelist and action_id not in class_whitelist:
            continue

        score = 1.0
        if len(row) == 8:
            score = float(row[7])

        entries[image_key].append((score, action_id, y1, x1, y2, x2))

    for image_key in entries:
        # Evaluation API assumes boxes with descending scores
        entry = sorted(entries[image_key], key=lambda tup: -tup[0])
        boxes[image_key] = [x[2:] for x in entry]
        labels[image_key] = [x[1] for x in entry]
        scores[image_key] = [x[0] for x in entry]

    print_time('read file ' + csv_file.name, start)
    return boxes, labels, scores


def read_exclusions(exclusions_file):
    """Reads a CSV file of excluded timestamps.

    Args:
        exclusions_file: A file object containing a csv of video-id,timestamp.

    Returns:
        A set of strings containing excluded image keys, e.g.
        "aaaaaaaaaaa,0904",
        or an empty set if exclusions file is None.
    """
    excluded = set()
    if exclusions_file:
        reader = csv.reader(exclusions_file)
    for row in reader:
        assert len(row) == 2, f'Expected only 2 columns, got: {row}'
        excluded.add(make_image_key(row[0], row[1]))
    return excluded


def read_labelmap(labelmap_file):
    """Reads a labelmap without the dependency on protocol buffers.

    Args:
        labelmap_file: A file object containing a label map protocol buffer.

    Returns:
        labelmap: The label map in the form used by the
        object_detection_evaluation
        module - a list of {"id": integer, "name": classname } dicts.
        class_ids: A set containing all of the valid class id integers.
    """
    labelmap = []
    class_ids = set()
    name = ''
    class_id = ''
    for line in labelmap_file:
        if line.startswith('  name:'):
            name = line.split('"')[1]
        elif line.startswith('  id:') or line.startswith('  label_id:'):
            class_id = int(line.strip().split(' ')[-1])
            labelmap.append({'id': class_id, 'name': name})
            class_ids.add(class_id)
    return labelmap, class_ids


# Seems there is at most 100 detections for each image
def ava_eval(result_file,
             result_type,
             label_file,
             ann_file,
             exclude_file,
             verbose=True,
             custom_classes=None):

    assert result_type in ['mAP']

    start = time.time()
    categories, class_whitelist = read_labelmap(open(label_file))
    if custom_classes is not None:
        custom_classes = custom_classes[1:]
        assert set(custom_classes).issubset(set(class_whitelist))
        class_whitelist = custom_classes
        categories = [cat for cat in categories if cat['id'] in custom_classes]

    # loading gt, do not need gt score
    gt_boxes, gt_labels, _ = read_csv(open(ann_file), class_whitelist)
    if verbose:
        print_time('Reading detection results', start)

    if exclude_file is not None:
        excluded_keys = read_exclusions(open(exclude_file))
    else:
        excluded_keys = list()

    start = time.time()
    boxes, labels, scores = read_csv(open(result_file), class_whitelist)
    if verbose:
        print_time('Reading detection results', start)

    # Evaluation for mAP
    pascal_evaluator = det_eval.PascalDetectionEvaluator(categories)

    start = time.time()
    for image_key in gt_boxes:
        if verbose and image_key in excluded_keys:
            logging.info(
                'Found excluded timestamp in detections: %s.'
                'It will be ignored.', image_key)
            continue
        pascal_evaluator.add_single_ground_truth_image_info(
            image_key, {
                standard_fields.InputDataFields.groundtruth_boxes:
                np.array(gt_boxes[image_key], dtype=float),
                standard_fields.InputDataFields.groundtruth_classes:
                np.array(gt_labels[image_key], dtype=int)
            })
    if verbose:
        print_time('Convert groundtruth', start)

    start = time.time()
    for image_key in boxes:
        if verbose and image_key in excluded_keys:
            logging.info(
                'Found excluded timestamp in detections: %s.'
                'It will be ignored.', image_key)
            continue
        pascal_evaluator.add_single_detected_image_info(
            image_key, {
                standard_fields.DetectionResultFields.detection_boxes:
                np.array(boxes[image_key], dtype=float),
                standard_fields.DetectionResultFields.detection_classes:
                np.array(labels[image_key], dtype=int),
                standard_fields.DetectionResultFields.detection_scores:
                np.array(scores[image_key], dtype=float)
            })
    if verbose:
        print_time('convert detections', start)

    start = time.time()
    metrics = pascal_evaluator.evaluate()
    if verbose:
        print_time('run_evaluator', start)
    for display_name in metrics:
        print(f'{display_name}=\t{metrics[display_name]}')
    return {
        display_name: metrics[display_name]
        for display_name in metrics if 'ByCategory' not in display_name
    }