7_customize_runtime.md 12.4 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Tutorial 7: Customize Runtime Settings

In this tutorial, we will introduce some methods about how to customize optimization methods, training schedules, workflow and hooks when running your own settings for the project.

<!-- TOC -->

- [Customize Optimization Methods](#customize-optimization-methods)
  - [Customize optimizer supported by PyTorch](#customize-optimizer-supported-by-pytorch)
  - [Customize self-implemented optimizer](#customize-self-implemented-optimizer)
    - [1. Define a new optimizer](#1-define-a-new-optimizer)
    - [2. Add the optimizer to registry](#2-add-the-optimizer-to-registry)
    - [3. Specify the optimizer in the config file](#3-specify-the-optimizer-in-the-config-file)
  - [Customize optimizer constructor](#customize-optimizer-constructor)
  - [Additional settings](#additional-settings)
- [Customize Training Schedules](#customize-training-schedules)
- [Customize Workflow](#customize-workflow)
- [Customize Hooks](#customize-hooks)
  - [Customize self-implemented hooks](#customize-self-implemented-hooks)
    - [1. Implement a new hook](#1-implement-a-new-hook)
    - [2. Register the new hook](#2-register-the-new-hook)
    - [3. Modify the config](#3-modify-the-config)
  - [Use hooks implemented in MMCV](#use-hooks-implemented-in-mmcv)
  - [Modify default runtime hooks](#modify-default-runtime-hooks)
    - [Checkpoint config](#checkpoint-config)
    - [Log config](#log-config)
    - [Evaluation config](#evaluation-config)

<!-- TOC -->

## Customize Optimization Methods

### Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the `optimizer` field of config files.
For example, if you want to use `Adam`, the modification could be as the following.

```python
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
```

To modify the learning rate of the model, the users only need to modify the `lr` in the config of optimizer.
The users can directly set arguments following the [API doc](https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim) of PyTorch.

For example, if you want to use `Adam` with the setting like `torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)` in PyTorch,
the modification could be set as the following.

```python
optimizer = dict(type='Adam', lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
```

### Customize self-implemented optimizer

#### 1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add an optimizer named `MyOptimizer`, which has arguments `a`, `b`, and `c`.
You need to create a new directory named `mmaction/core/optimizer`.
And then implement the new optimizer in a file, e.g., in `mmaction/core/optimizer/my_optimizer.py`:

```python
from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c):

```

#### 2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are two ways to achieve it.

- Modify `mmaction/core/optimizer/__init__.py` to import it.

  The newly defined module should be imported in `mmaction/core/optimizer/__init__.py` so that the registry will
  find the new module and add it:

```python
from .my_optimizer import MyOptimizer
```

- Use `custom_imports` in the config to manually import it

```python
custom_imports = dict(imports=['mmaction.core.optimizer.my_optimizer'], allow_failed_imports=False)
```

The module `mmaction.core.optimizer.my_optimizer` will be imported at the beginning of the program and the class `MyOptimizer` is then automatically registered.
Note that only the package containing the class `MyOptimizer` should be imported. `mmaction.core.optimizer.my_optimizer.MyOptimizer` **cannot** be imported directly.

#### 3. Specify the optimizer in the config file

Then you can use `MyOptimizer` in `optimizer` field of config files.
In the configs, the optimizers are defined by the field `optimizer` like the following:

```python
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
```

To use your own optimizer, the field can be changed to

```python
optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
```

### Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer constructor.

```python
from mmcv.runner.optimizer import OPTIMIZER_BUILDERS


@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:

    def __init__(self, optimizer_cfg, paramwise_cfg=None):
        pass

    def __call__(self, model):

        return my_optimizer
```

The default optimizer constructor is implemented [here](https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/optimizer/default_constructor.py#L11),
which could also serve as a template for new optimizer constructor.

### Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer constructor (e.g., set parameter-wise learning rates) or hooks.
We list some common settings that could stabilize the training or accelerate the training. Feel free to create PR, issue for more settings.

- __Use gradient clip to stabilize training__:
  Some models need gradient clip to clip the gradients to stabilize the training process. An example is as below:

  ```python
  optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
  ```

- __Use momentum schedule to accelerate model convergence__:
  We support momentum scheduler to modify model's momentum according to learning rate, which could make the model converge in a faster way.
  Momentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection to accelerate convergence.
  For more details, please refer to the implementation of [CyclicLrUpdater](https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327)
  and [CyclicMomentumUpdater](https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130).

  ```python
  lr_config = dict(
      policy='cyclic',
      target_ratio=(10, 1e-4),
      cyclic_times=1,
      step_ratio_up=0.4,
  )
  momentum_config = dict(
      policy='cyclic',
      target_ratio=(0.85 / 0.95, 1),
      cyclic_times=1,
      step_ratio_up=0.4,
  )
  ```

## Customize Training Schedules

we use step learning rate with default value in config files, this calls [`StepLRHook`](https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L153) in MMCV.
We support many other learning rate schedule [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py), such as `CosineAnnealing` and `Poly` schedule. Here are some examples

- Poly schedule:

  ```python
  lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
  ```

- ConsineAnnealing schedule:

  ```python
  lr_config = dict(
      policy='CosineAnnealing',
      warmup='linear',
      warmup_iters=1000,
      warmup_ratio=1.0 / 10,
      min_lr_ratio=1e-5)
  ```

## Customize Workflow

By default, we recommend users to use `EvalHook` to do evaluation after training epoch, but they can still use `val` workflow as an alternative.

Workflow is a list of (phase, epochs) to specify the running order and epochs. By default it is set to be

```python
workflow = [('train', 1)]
```

which means running 1 epoch for training.
Sometimes user may want to check some metrics (e.g. loss, accuracy) about the model on the validate set.
In such case, we can set the workflow as

```python
[('train', 1), ('val', 1)]
```

so that 1 epoch for training and 1 epoch for validation will be run iteratively.

:::{note}

1. The parameters of model will not be updated during val epoch.
2. Keyword `total_epochs` in the config only controls the number of training epochs and will not affect the validation workflow.
3. Workflows `[('train', 1), ('val', 1)]` and `[('train', 1)]` will not change the behavior of `EvalHook` because `EvalHook` is called by `after_train_epoch` and validation workflow only affect hooks that are called through `after_val_epoch`.
   Therefore, the only difference between `[('train', 1), ('val', 1)]` and `[('train', 1)]` is that the runner will calculate losses on validation set after each training epoch.

:::

## Customize Hooks

### Customize self-implemented hooks

#### 1. Implement a new hook

Here we give an example of creating a new hook in MMAction2 and using it in training.

```python
from mmcv.runner import HOOKS, Hook


@HOOKS.register_module()
class MyHook(Hook):

    def __init__(self, a, b):
        pass

    def before_run(self, runner):
        pass

    def after_run(self, runner):
        pass

    def before_epoch(self, runner):
        pass

    def after_epoch(self, runner):
        pass

    def before_iter(self, runner):
        pass

    def after_iter(self, runner):
        pass
```

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in `before_run`, `after_run`, `before_epoch`, `after_epoch`, `before_iter`, and `after_iter`.

#### 2. Register the new hook

Then we need to make `MyHook` imported. Assuming the file is in `mmaction/core/utils/my_hook.py` there are two ways to do that:

- Modify `mmaction/core/utils/__init__.py` to import it.

  The newly defined module should be imported in `mmaction/core/utils/__init__.py` so that the registry will
  find the new module and add it:

```python
from .my_hook import MyHook
```

- Use `custom_imports` in the config to manually import it

```python
custom_imports = dict(imports=['mmaction.core.utils.my_hook'], allow_failed_imports=False)
```

#### 3. Modify the config

```python
custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value)
]
```

You can also set the priority of the hook by adding key `priority` to `'NORMAL'` or `'HIGHEST'` as below

```python
custom_hooks = [
    dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
]
```

By default the hook's priority is set as `NORMAL` during registration.

### Use hooks implemented in MMCV

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

```python
mmcv_hooks = [
    dict(type='MMCVHook', a=a_value, b=b_value, priority='NORMAL')
]
```

### Modify default runtime hooks

There are some common hooks that are not registered through `custom_hooks` but has been registered by default when importing MMCV, they are

- log_config
- checkpoint_config
- evaluation
- lr_config
- optimizer_config
- momentum_config

In those hooks, only the logger hook has the `VERY_LOW` priority, others' priority are `NORMAL`.
The above-mentioned tutorials already cover how to modify `optimizer_config`, `momentum_config`, and `lr_config`.
Here we reveals how what we can do with `log_config`, `checkpoint_config`, and `evaluation`.

#### Checkpoint config

The MMCV runner will use `checkpoint_config` to initialize [`CheckpointHook`](https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py#L9).

```python
checkpoint_config = dict(interval=1)
```

The users could set `max_keep_ckpts` to only save only small number of checkpoints or decide whether to store state dict of optimizer by `save_optimizer`.
More details of the arguments are [here](https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook)

#### Log config

The `log_config` wraps multiple logger hooks and enables to set intervals. Now MMCV supports `WandbLoggerHook`, `MlflowLoggerHook`, and `TensorboardLoggerHook`.
The detail usages can be found in the [doc](https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook).

```python
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
```

#### Evaluation config

The config of `evaluation` will be used to initialize the [`EvalHook`](https://github.com/open-mmlab/mmaction2/blob/master/mmaction/core/evaluation/eval_hooks.py#L12).
Except the key `interval`, other arguments such as `metrics` will be passed to the `dataset.evaluate()`

```python
evaluation = dict(interval=1, metrics='bbox')
```