finetune.py 4.68 KB
Newer Older
dengjb's avatar
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Code adapted from https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/supervised_finetuning.py
# and https://huggingface.co/blog/gemma-peft
import argparse
import multiprocessing
import os

import torch
import transformers
from accelerate import PartialState
from datasets import load_dataset
from peft import LoraConfig
from transformers import (
    AutoModelForCausalLM,
    BitsAndBytesConfig,
    logging,
    set_seed,
)
from trl import SFTTrainer


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_id", type=str, default="bigcode/starcoder2-3b")
    parser.add_argument("--dataset_name", type=str, default="the-stack-smol")
    parser.add_argument("--subset", type=str, default="data/rust")
    parser.add_argument("--split", type=str, default="train")
    parser.add_argument("--dataset_text_field", type=str, default="content")

    parser.add_argument("--max_seq_length", type=int, default=1024)
    parser.add_argument("--max_steps", type=int, default=1000)
    parser.add_argument("--micro_batch_size", type=int, default=1)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
    parser.add_argument("--weight_decay", type=float, default=0.01)
    parser.add_argument("--bf16", type=bool, default=True)

    parser.add_argument("--attention_dropout", type=float, default=0.1)
    parser.add_argument("--learning_rate", type=float, default=2e-4)
    parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
    parser.add_argument("--warmup_steps", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--output_dir", type=str, default="finetune_starcoder2")
    parser.add_argument("--num_proc", type=int, default=None)
    parser.add_argument("--push_to_hub", type=bool, default=True)
    return parser.parse_args()


def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )


def main(args):
    # config
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=False,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
    )
    lora_config = LoraConfig(
        r=8,
        target_modules=[
            "q_proj",
            "o_proj",
            "k_proj",
            "v_proj",
            "gate_proj",
            "up_proj",
            "down_proj",
        ],
        task_type="CAUSAL_LM",
    )

    # load model and dataset
    token = os.environ.get("HF_TOKEN", None)
    model = AutoModelForCausalLM.from_pretrained(
        args.model_id,
        # quantization_config=bnb_config,
        device_map={"": PartialState().process_index},
        attention_dropout=args.attention_dropout,
    )
    print_trainable_parameters(model)

    data = load_dataset(
        args.dataset_name,
        data_dir=args.subset,
        split=args.split,
        token=token,
        num_proc=args.num_proc if args.num_proc else multiprocessing.cpu_count(),
    )

    # setup the trainer
    trainer = SFTTrainer(
        model=model,
        train_dataset=data,
        max_seq_length=args.max_seq_length,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=args.micro_batch_size,
            gradient_accumulation_steps=args.gradient_accumulation_steps,
            warmup_steps=args.warmup_steps,
            max_steps=args.max_steps,
            learning_rate=args.learning_rate,
            lr_scheduler_type=args.lr_scheduler_type,
            weight_decay=args.weight_decay,
            bf16=args.bf16,
            logging_strategy="steps",
            logging_steps=10,
            output_dir=args.output_dir,
            optim="adamw_hf",
            seed=args.seed,
            run_name=f"train-{args.model_id.split('/')[-1]}",
            report_to="all",
        ),
        peft_config=lora_config,
        dataset_text_field=args.dataset_text_field,
    )

    # launch
    print("Training...")
    trainer.train()

    print("Saving the last checkpoint of the model")
    model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
dengjb's avatar
dengjb committed
133
134
    #if args.push_to_hub:
    #    trainer.push_to_hub("Upload model")
dengjb's avatar
dengjb committed
135
136
137
138
139
140
141
142
143
144
145
    print("Training Done! 💥")


if __name__ == "__main__":
    args = get_args()
    set_seed(args.seed)
    os.makedirs(args.output_dir, exist_ok=True)

    logging.set_verbosity_error()

    main(args)