README.md 6.08 KB
Newer Older
chenxj's avatar
chenxj committed
1
2
3
4
5
6
# stable_diffusion
## 论文
[High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/pdf/2112.10752)
## 模型结构
stable diffusion的核心是latent diffusion model,latent diffusion model结构如下:

chenxj's avatar
chenxj committed
7
![image](https://developer.hpccube.com/codes/modelzoo/stable_diffusion_ait/-/raw/master/resources/sd_model.png)
chenxj's avatar
chenxj committed
8
9
10
## 算法原理
根据模型结构,算法原理简要如下:

chenxj's avatar
chenxj committed
11
![image](https://developer.hpccube.com/codes/modelzoo/stable_diffusion_ait/-/raw/master/resources/sd_principle.png)
chenxj's avatar
chenxj committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
## 数据集

## 环境配置
[光源](https://sourcefind.cn/#/service-list)可拉取推理的docker镜像。stable_diffusion_ait推荐的镜像如下:
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ait-0.0.1_dtk24.04_py310
docker run -d -t -v /opt/hyhal:/opt/hyhal:ro --privileged --device=/dev/kfd --device=/dev/dri/ --network=host --group-add video --name sd-test image.sourcefind.cn:5000/dcu/admin/base/custom:ait-0.0.1_dtk24.04_py310
docker exec -it sd-test bash
source /opt/dtk/env.sh
```
## 推理
**install ait**
```
cd stable_diffusion_ait
pip3 install dist/aitemplate-0.0.1-py3-none-any.whl
```
#### 01_resnet-50
```
cd examples/01_resnet-50
```
下载resnet50 weights(https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth)

**benchmark**
```
python3 benchmark_ait.py
python3 benchmark_pt.py
```
**infer**
```
python3 infer_with_torch.py
```
#### 02_bert
```
cd examples/02_bert
```
下载bert-base-uncased weights(https://huggingface.co/google-bert/bert-base-uncased)

**benchmark**
```
python3 benchmark_ait.py
python3 benchmark_pt.py
```
**infer**
```
python3 demo.py
```
#### 03_vit
```
cd examples/03_vit
```
下载vit_base_patch16_224 weights(https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k)

**benchmark**
```
python3 benchmark_ait.py
python3 benchmark_pt.py
```
**verification**
```
python3 verification.py
```
#### 04_stable_diffusion

下载stable-diffusion-2-1-base weights(https://huggingface.co/stabilityai/stable-diffusion-2-1-base)

下载clip-vit-large-patch14 weights(https://huggingface.co/openai/clip-vit-large-patch14)

**compile**
```
cd examples/04_stable_diffusion
python3 scripts/compile.py --local-dir stable-diffusion-2-1-base_path
```
**benchmark**
```
python3 src/benchmark.py --local-dir stable-diffusion-2-1-base_path --clip-dir clip-vit-large-patch14_path --benchmark-pt True
```
**infer**
```
python3 scripts/demo.py --local-dir stable-diffusion-2-1-base_path
python3 scripts/demo_pt.py --local-dir stable-diffusion-2-1-base_path
```
## result
chenxj's avatar
chenxj committed
94
![image](https://developer.hpccube.com/codes/modelzoo/stable_diffusion_ait/-/raw/master/resources/example_ait.png)
chenxj's avatar
chenxj committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
### 精度

### 性能数据
01_resnet-50
| batch size | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| 1 | 3.50665771484375 | 2.7900346517562866 | 
| 2 | 4.198978271484375 | 3.022238612174988 | 
| 4 | 5.242999877929687 | 3.6645140647888184 | 
| 8 | 7.416472778320313 | 4.517657279968262 | 
| 16 | 11.60461181640625 | 6.50670599937439 | 
| 32 | 19.8466064453125 | 10.511437177658081 | 
| 64 | 36.08590576171875 | 18.35416030883789 | 
| 128 | 67.2965625 | 32.82508373260498 | 
| 256 | 133.891044921875 | 59.32628345489502 | 

02_bert
bert sequence length 64
| batch size | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| 1 | 5.492328491210937 | 3.763094484806061 | 
| 2 | 5.851014404296875 | 3.934549331665039 | 
| 4 | 5.8462060546875 | 7.370500087738037 | 
| 8 | 7.20282958984375 | 7.630655765533447 | 
| 16 | 10.13709716796875 | 6.997292518615723 | 
| 32 | 14.629547119140625 | 15.192972660064697 | 
| 64 | 24.83916259765625 | 18.988140106201172 | 
| 128 | 45.0836083984375 | 33.51811981201172 | 
| 256 | 85.2006640625 | 91.8479995727539 | 

bert sequence length 128
| batch size | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| 1 | 5.583170776367187 | 3.8969525694847107 | 
| 2 | 5.851030883789062 | 7.2915791273117065 | 
| 4 | 7.507911376953125 | 7.635279178619385 | 
| 8 | 10.716405029296874 | 6.723778605461121 | 
| 16 | 16.03172607421875 | 14.665886878967285 | 
| 32 | 27.00265869140625 | 18.18143320083618 | 
| 64 | 49.812158203125 | 32.23751640319824 | 
| 128 | 94.589228515625 | 87.85263633728027 | 
| 256 | 179.57365234375 | 107.5546760559082 | 

bert sequence length 256
| batch size | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| 1 | 5.536416625976562 | 4.418213129043579 | 
| 2 | 7.61077392578125 | 5.24817168712616 | 
| 4 | 11.207763671875 | 14.24576473236084 | 
| 8 | 16.431724853515625 | 12.16104507446289 | 
| 16 | 26.9556640625 | 19.11765956878662 | 
| 32 | 49.54421875 | 33.73731803894043 | 
| 64 | 93.535673828125 | 61.45344161987305 | 
| 128 | 178.09998046875 | 113.69585227966309 | 
| 256 | 347.1721484375 | 2563.2373657226562 | 

03_vit
vit_base_patch16_224
| batch size | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| 1 | 4.531996154785157 | 8.322586297988892 | 
| 2 | 6.666417846679687 | 8.580682277679443 | 
| 4 | 10.00460205078125 | 6.754000902175903 | 
| 8 | 13.427578125 | 9.69419240951538 | 
| 16 | 21.916123046875 | 17.138832092285156 | 
| 32 | 40.23213134765625 | 28.402775287628174 | 
| 64 | 72.446611328125 | 53.653794288635254 | 
| 128 | 136.889541015625 | 99.72106170654297 | 
| 256 | 269.488203125 | 186.07625198364258 | 

04_stable_diffusion
single batch
| module | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| clip | 11.66868896484375 | 13.639567375183105 | 
| unet | 106.440107421875 | 71.8858814239502 | 
| vae | 95.6298046875 | 74.00970458984375 | 
| pipline | 5429.30386474609375 | 3681.943343162536855 | 

batched version
| batch size | pt latency(ms) | ait latency(ms) | 
| :------: | :------: |:------: |
| 1 | 5429.30386474609375 | 3681.943343162536855 | 
| 2 | 13816.322286962532 | 5283.831155044027 | 
| 4 | 23745.903372997418 | 9285.692506004125 | 
## 应用场景
### 算法类别
文生图
### 热点应用行业
艺术设计,游戏开发,电影制作
## 源码仓库及问题反馈
http://10.6.10.68/modelzoo/stable_diffusion_ait
## 参考资料
https://github.com/ROCm/AITemplate