benchmark_pt.py 5.09 KB
Newer Older
chenxj's avatar
chenxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#  Copyright (c) Meta Platforms, Inc. and affiliates.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import click
import torch
from aitemplate.testing.benchmark_pt import benchmark_torch_function
from modeling.torch_model import BertBaseUncased


def benchmark_pt(pretrained=True, batchsize=0):
    bert = BertBaseUncased(pretrained=pretrained)
    model = bert._model
    model.eval()

    if batchsize == 0:
        candidate_batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256]
    else:
        candidate_batch_sizes = [batchsize]

    with torch.inference_mode():
        for seq_length in [64, 128]:
            for batch_size in candidate_batch_sizes:
                try:
                    input_ids, token_type_ids, position_ids = bert.generate_inputs(
                        batch_size, seq_length
                    )
                    bert.forward(
                        input_ids=input_ids,
                        token_type_ids=token_type_ids,
                        position_ids=position_ids,
                    )
                    # warmup
                    t = benchmark_torch_function(
                        100,
                        bert.forward,
                        input_ids=input_ids,
                        token_type_ids=token_type_ids,
                        position_ids=position_ids,
                    )
                    # benchmark
                    t = benchmark_torch_function(
                        100,
                        bert.forward,
                        input_ids=input_ids,
                        token_type_ids=token_type_ids,
                        position_ids=position_ids,
                    )
                    print(
                        f"bert pt: batch_size: {batch_size}, seq_length: {seq_length}, {t} ms",
                    )
                    with open("bert_pt_benchmark.txt", "a") as f:
                        f.write(
                            f"batch_size: {batch_size}, seq_length: {seq_length} latency: {t} ms\n"
                        )
                except RuntimeError:
                    # pt runs out of memory
                    break


def benchmark_pt_encoders_only(pretrained=True, batchsize=0):
    model = BertBaseUncased(pretrained=pretrained)
    pt_bert = model._model
    pt_bert.eval()

    encoder = pt_bert.bert.encoder
    hidden_size = pt_bert.config.hidden_size

    if batchsize == 0:
        candidate_batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256]
    else:
        candidate_batch_sizes = [batchsize]

    for seq_length in [64, 128, 256]:
        for batch_size in candidate_batch_sizes:
            try:
                encoder_input = (
                    torch.randn([batch_size, seq_length, hidden_size]).cuda().half()
                )
                encoder.forward(encoder_input)
                # warmup
                t = benchmark_torch_function(
                    100,
                    encoder.forward,
                    encoder_input,
                )
                # benchmark
                t = benchmark_torch_function(
                    100,
                    encoder.forward,
                    encoder_input,
                )
                print(
                    f"bert encoders pt: batch_size: {batch_size}, seq_length: {seq_length}, {t} ms",
                )
                with open("bert_encoders_pt_benchmark.txt", "a") as f:
                    f.write(
                        f"batch_size: {batch_size}, seq_length: {seq_length} latency: {t} ms\n"
                    )
            except RuntimeError:
                # pt runs out of memory
                break


@click.command()
@click.option(
    "--use-pretrained-pt-model",
    type=bool,
    default=True,
    help="Whether or not to use the pretrained BERT model weights.",
)
@click.option(
    "--encoders-only",
    type=bool,
    default=True,
    help="Whether or not to run the BERT benchmark with encoders only. If enabled, only the transformer blocks without BERT embeddings are benchmarked.",
)
@click.option(
    "--batch-size",
    type=int,
    default=0,
    help="The batch size to use for the benchmark. If 0, the batch size is default [1 : 128].",
)
def benchmark(
    use_pretrained_pt_model: bool,
    encoders_only: bool,
    batch_size: int,
):
    if encoders_only:
        benchmark_pt_encoders_only(use_pretrained_pt_model, batch_size)
    else:
        benchmark_pt(use_pretrained_pt_model, batch_size)


if __name__ == "__main__":
    torch.manual_seed(4896)
    benchmark()