inference_diffusers.py 6.56 KB
Newer Older
mashun1's avatar
sdxl  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import time
import os

from typing import Optional
from pathlib import Path

from diffusers.utils import load_image
from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting, \
                      StableDiffusionXLInpaintPipeline, AutoPipelineForImage2Image, \
                      StableDiffusionXLImg2ImgPipeline, DiffusionPipeline


def get_pipeline(base_path: Optional[str] = None,
                 refiner_path: Optional[str] = None,
                 mode: str = "t2i"):
    # mode = Union[t2i, i2i, inpainting, t2i_wr, inpainting_wr]
    
    if "t2i" in mode:
        if "wr" in mode:
            base_pipeline = DiffusionPipeline.from_pretrained(
                base_path,
                torch_dtype=torch.float16,
                variant="fp16",
                use_safetensors=True
            ).to("cuda")
            
            refiner_pipeline = DiffusionPipeline.from_pretrained(
                refiner_path,
                text_encoder_2=base_pipeline.text_encoder_2,
                vae=base_pipeline.vae,
                torch_dtype=torch.float16,
                use_safetensors=True,
                variant="fp16",
            ).to("cuda")
            
            pipelines = [base_pipeline, refiner_pipeline]
            
        else:
            base_pipeline = AutoPipelineForText2Image.from_pretrained(
                base_path,
                torch_dtype=torch.float16,
                variant="fp16",
                use_safetensors=True
            ).to("cuda")
            
            pipelines = [base_pipeline]
    elif "i2i" in mode:
        base_pipeline = AutoPipelineForImage2Image.from_pretrained(
            base_path,
            torch_dtype=torch.float16,
            variant="fp16",
            use_safetensors=True
        ).to("cuda")
        
        pipelines = [base_pipeline]
        
    elif "inpainting" in mode:
        if "wr" in mode:
            base_pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
                base_path,
                torch_dtype=torch.float16,
                variant="fp16",
                use_safetensors=True
            ).to("cuda")
            
            refiner_pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
                refiner_path,
                text_encoder_2=base_pipeline.text_encoder_2,
                vae=base_pipeline.vae,
                torch_dtype=torch.float16,
                use_safetensors=True,
                variant="fp16"
            ).to("cuda")
            
            pipelines = [base_pipeline, refiner_pipeline]
        else:
            base_pipeline = AutoPipelineForInpainting.from_pretrained(
                base_path,
                torch_dtype=torch.float16,
                variant="fp16",
                use_safetensors=True
            ).to("cuda")
            
            pipelines = [base_pipeline]
    else:
        raise NotImplemented
            
    return pipelines


def save_img(img,
             save_root,
             mode):
    save_root = os.path.join(save_root, mode)
    
    os.makedirs(save_root, exist_ok=True)
    
    save_path = os.path.join(save_root, str(time.time())+".png")
    
    img.save(save_path)
    

def t2i(pipelines: list,
        prompt: str):
    if len(pipelines) == 1:  # only base
        image = pipelines[0](prompt=prompt).images[0]
    else:
        image = pipelines[0](prompt=prompt,
                             num_inference_steps=40,
                             denoising_end=0.8,
                             output_type="latent").images
        image = pipelines[1](prompt=prompt,
                             num_inference_steps=40,
                             denoising_start=0.8,
                             image=image).images[0]
    
    return image
        

def i2i(pipelines: list,
        prompt: str,
        img_path: str):
    if len(pipelines) == 1:
        init_image = load_image(img_path)
        image = pipelines[0](prompt=prompt,
                             image=init_image,
                             strength=0.8,
                             guidance_scale=10.5).images[0]
    else:
        raise NotImplementedError

    return image


def inpainting(pipelines: list,
               prompt: str,
               img_path: str,
               mask_path: str):
    init_image = load_image(img_path)
    mask_image = load_image(mask_path)
    
    if len(pipelines) == 1:
        image = pipelines[0](prompt=prompt,
                             image=init_image,
                             mask_image=mask_image,
                             strength=0.85,
                             guidance_scale=12.5).images[0]
    else:
        image = pipelines[0](prompt=prompt,
                             image=init_image,
                             mask_image=mask_image,
                             num_inference_steps=75,
                             denoising_end=0.7,
                             output_type="latent").images
        
        image = pipelines[1](prompt=prompt,
                             image=image,
                             mask_image=mask_image,
                             num_inference_steps=75,
                             denoising_start=0.7).images[0]

    return image


def inference(args):
    
    pipelines = get_pipeline(args.base_path,
                             args.refiner_path,
                             args.mode)

    if "t2i" in args.mode:
        img = t2i(pipelines, args.prompt)
    elif "i2i" in args.mode:
        img = i2i(pipelines, args.prompt, args.img_path)
    elif "inpainting" in args.mode:
        img = inpainting(pipelines, args.prompt, args.img_path, args.mask_path)
    
    save_img(img, args.save_root, args.mode)
    


if __name__ == "__main__":
    from argparse import ArgumentParser
    
    default_base_path = str(Path(__file__).resolve().parent / "pretrained_models" / "stable-diffusion-xl-base-1.0")

    default_refiner_path = str(Path(__file__).resolve().parent / "pretrained_models" / "stable-diffusion-xl-refiner-1.0")
    
    parser = ArgumentParser()
    
    parser.add_argument("--base_path", default=default_base_path, type=str)
    
    parser.add_argument("--refiner_path", default=default_refiner_path, type=str)
    
    parser.add_argument("--prompt", default="a panda is playing a ball", type=str)
    
    parser.add_argument("--img_path", type=str, default="")
    
    parser.add_argument("--mask_path", type=str, default="")
    
    parser.add_argument("--save_root", default="./results", type=str)
    
    parser.add_argument("--mode", type=str, required=True)
    
    args = parser.parse_args()
    
    inference(args)