Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • S SSD_pytorch
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • ModelZoo
  • SSD_pytorch
  • Issues
  • #1

Closed
Open
Created Jun 04, 2025 by t5y6jjj@t5y6jjj

推理报错:RuntimeError: No HIP GPUs are available

使用docker方式进行环境配置并安装了依赖,进行推理命令执行报错:RuntimeError: No HIP GPUs are available

root@node2:/home/ssd_pytorch# python test.py --config-file configs/vgg_ssd300_coco2017_50_trainval.yaml

2025-06-04 16:13:31,743 SSD INFO: Using 1 GPUs
2025-06-04 16:13:31,744 SSD INFO: Namespace(config_file='configs/vgg_ssd300_coco2017_50_trainval.yaml', local_rank=0, ckpt=None, output_dir='eval_results', opts=[])
2025-06-04 16:13:31,744 SSD INFO: Loaded configuration file configs/vgg_ssd300_coco2017_50_trainval.yaml
2025-06-04 16:13:31,744 SSD INFO:
MODEL:
  NUM_CLASSES: 81
  PRIORS:
    FEATURE_MAPS: [38, 19, 10, 5, 3, 1]
    STRIDES: [8, 16, 32, 64, 100, 300]
    MIN_SIZES: [21, 45, 99, 153, 207, 261]
    MAX_SIZES: [45, 99, 153, 207, 261, 315]
    ASPECT_RATIOS: [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
    BOXES_PER_LOCATION: [4, 6, 6, 6, 4, 4]
INPUT:
  IMAGE_SIZE: 300
DATASETS:
  TRAIN: ("coco2017_50_train", )
  TEST: ("coco2017_50_val", )
SOLVER:
  MAX_ITER: 400000
  LR_STEPS: [280000, 360000]
  GAMMA: 0.1
  BATCH_SIZE: 32
  LR: 1e-3

OUTPUT_DIR: 'outputs/vgg_ssd300_coco2017_trainval'

2025-06-04 16:13:31,744 SSD INFO: Running with config:
DATASETS:
  TEST: ('coco2017_50_val',)
  TRAIN: ('coco2017_50_train',)
DATA_LOADER:
  NUM_WORKERS: 8
  PIN_MEMORY: True
INPUT:
  IMAGE_SIZE: 300
  PIXEL_MEAN: [123, 117, 104]
MODEL:
  BACKBONE:
    NAME: vgg
    OUT_CHANNELS: (512, 1024, 512, 256, 256, 256)
    PRETRAINED: True
  BOX_HEAD:
    NAME: SSDBoxHead
    PREDICTOR: SSDBoxPredictor
  CENTER_VARIANCE: 0.1
  DEVICE: cuda
  META_ARCHITECTURE: SSDDetector
  NEG_POS_RATIO: 3
  NUM_CLASSES: 81
  PRIORS:
    ASPECT_RATIOS: [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
    BOXES_PER_LOCATION: [4, 6, 6, 6, 4, 4]
    CLIP: True
    FEATURE_MAPS: [38, 19, 10, 5, 3, 1]
    MAX_SIZES: [45, 99, 153, 207, 261, 315]
    MIN_SIZES: [21, 45, 99, 153, 207, 261]
    STRIDES: [8, 16, 32, 64, 100, 300]
  SIZE_VARIANCE: 0.2
  THRESHOLD: 0.5
OUTPUT_DIR: outputs/vgg_ssd300_coco2017_trainval
SOLVER:
  BATCH_SIZE: 32
  GAMMA: 0.1
  LR: 0.001
  LR_STEPS: [280000, 360000]
  MAX_ITER: 400000
  MOMENTUM: 0.9
  WARMUP_FACTOR: 0.3333333333333333
  WARMUP_ITERS: 500
  WEIGHT_DECAY: 0.0005
TEST:
  BATCH_SIZE: 10
  CONFIDENCE_THRESHOLD: 0.01
  MAX_PER_CLASS: -1
  MAX_PER_IMAGE: 100
  NMS_THRESHOLD: 0.45
Traceback (most recent call last):
  File "/home/ssd_pytorch/test.py", line 87, in <module>
    main()
  File "/home/ssd_pytorch/test.py", line 83, in main
    evaluation(cfg, ckpt=args.ckpt, distributed=distributed)
  File "/home/ssd_pytorch/test.py", line 23, in evaluation
    model.to(device)
  File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1160, in to
    return self._apply(convert)
  File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 833, in _apply
    param_applied = fn(param)
  File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1158, in convert
    return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
  File "/usr/local/lib/python3.10/site-packages/torch/cuda/__init__.py", line 298, in _lazy_init
    torch._C._cuda_init()
RuntimeError: No HIP GPUs are available
root@node2:/home/ssd_pytorch#

DCU设备:

root@node2:/home/ssd_pytorch# rocm-smi

============================ System Management Interface =============================
======================================================================================
DCU     Temp     AvgPwr     Perf     PwrCap     VRAM%      DCU%      Mode
0       56.0C    95.0W      high     400.0W     0%         0%        Normal
1       56.0C    98.0W      high     400.0W     0%         0%        Normal
2       56.0C    89.0W      high     400.0W     0%         0%        Normal
3       57.0C    93.0W      high     400.0W     0%         0%        Normal
4       59.0C    100.0W     high     400.0W     0%         0%        Normal
5       59.0C    102.0W     high     400.0W     0%         0%        Normal
6       58.0C    95.0W      high     400.0W     0%         0%        Normal
7       57.0C    96.0W      high     400.0W     0%         0%        Normal
======================================================================================
=================================== End of SMI Log ===================================

请问有什么解决办法吗

Assignee
Assign to
Time tracking