speech_featurizers.py 9.71 KB
Newer Older
Sehoon Kim's avatar
Sehoon Kim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright 2020 Huy Le Nguyen (@usimarit) and Huy Phan (@pquochuy)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import io
import abc
import math
from typing import Union
import numpy as np
import librosa
import soundfile as sf
import tensorflow as tf
import tensorflow_io as tfio

from ..utils import math_util, env_util


def load_and_convert_to_wav(path: str) -> tf.Tensor:
    wave, rate = librosa.load(os.path.expanduser(path), sr=None, mono=True)
    return tf.audio.encode_wav(tf.expand_dims(wave, axis=-1), sample_rate=rate)


def read_raw_audio(audio: Union[str, bytes, np.ndarray], sample_rate=16000) -> np.ndarray:
    if isinstance(audio, str):
        wave, _ = librosa.load(os.path.expanduser(audio), sr=sample_rate, mono=True)
    elif isinstance(audio, bytes):
        wave, sr = sf.read(io.BytesIO(audio))
        if wave.ndim > 1: wave = np.mean(wave, axis=-1)
        wave = np.asfortranarray(wave)
        if sr != sample_rate: wave = librosa.resample(wave, sr, sample_rate)
    elif isinstance(audio, np.ndarray):
        if audio.ndim > 1: ValueError("input audio must be single channel")
        return audio
    else:
        raise ValueError("input audio must be either a path or bytes")
    return wave


def tf_read_raw_audio(audio: tf.Tensor, sample_rate=16000) -> tf.Tensor:
    wave, rate = tf.audio.decode_wav(audio, desired_channels=1, desired_samples=-1)
    if not env_util.has_devices("TPU"):
        resampled = tfio.audio.resample(wave, rate_in=tf.cast(rate, dtype=tf.int64), rate_out=sample_rate)
        return tf.reshape(resampled, shape=[-1])  # reshape for using tf.signal
    return tf.reshape(wave, shape=[-1])  # reshape for using tf.signal


def slice_signal(signal, window_size, stride=0.5) -> np.ndarray:
    """ Return windows of the given signal by sweeping in stride fractions of window """
    assert signal.ndim == 1, signal.ndim
    n_samples = signal.shape[0]
    offset = int(window_size * stride)
    slices = []
    for beg_i, end_i in zip(range(0, n_samples, offset),
                            range(window_size, n_samples + offset,
                                  offset)):
        slice_ = signal[beg_i:end_i]
        if slice_.shape[0] < window_size:
            slice_ = np.pad(
                slice_, (0, window_size - slice_.shape[0]), 'constant', constant_values=0.0)
        if slice_.shape[0] == window_size:
            slices.append(slice_)
    return np.array(slices, dtype=np.float32)


def tf_merge_slices(slices: tf.Tensor) -> tf.Tensor:
    # slices shape = [batch, window_size]
    return tf.keras.backend.flatten(slices)  # return shape = [-1, ]


def merge_slices(slices: np.ndarray) -> np.ndarray:
    # slices shape = [batch, window_size]
    return np.reshape(slices, [-1])


def tf_normalize_audio_features(audio_feature: tf.Tensor, per_frame=False) -> tf.Tensor:
    """
    TF Mean and variance features normalization
    Args:
        audio_feature: tf.Tensor with shape [T, F]

    Returns:
        normalized audio features with shape [T, F]
    """
    axis = 1 if per_frame else None
    mean = tf.reduce_mean(audio_feature, axis=axis, keepdims=True)
    std_dev = tf.math.sqrt(tf.math.reduce_variance(audio_feature, axis=axis, keepdims=True) + 1e-9)
    return (audio_feature - mean) / std_dev


def tf_normalize_signal(signal: tf.Tensor) -> tf.Tensor:
    """
    TF Normailize signal to [-1, 1] range
    Args:
        signal: tf.Tensor with shape [None]

    Returns:
        normalized signal with shape [None]
    """
    gain = 1.0 / (tf.reduce_max(tf.abs(signal), axis=-1) + 1e-9)
    return signal * gain


def tf_preemphasis(signal: tf.Tensor, coeff=0.97):
    """
    TF Pre-emphasis
    Args:
        signal: tf.Tensor with shape [None]
        coeff: Float that indicates the preemphasis coefficient

    Returns:
        pre-emphasized signal with shape [None]
    """
    if not coeff or coeff <= 0.0: return signal
    s0 = tf.expand_dims(signal[0], axis=-1)
    s1 = signal[1:] - coeff * signal[:-1]
    return tf.concat([s0, s1], axis=-1)


def tf_depreemphasis(signal: tf.Tensor, coeff=0.97) -> tf.Tensor:
    """
    TF Depreemphasis
    Args:
        signal: tf.Tensor with shape [B, None]
        coeff: Float that indicates the preemphasis coefficient

    Returns:
        depre-emphasized signal with shape [B, None]
    """
    if not coeff or coeff <= 0.0: return signal

    def map_fn(elem):
        x = tf.expand_dims(elem[0], axis=-1)
        for n in range(1, elem.shape[0], 1):
            current = coeff * x[n - 1] + elem[n]
            x = tf.concat([x, [current]], axis=0)
        return x

    return tf.map_fn(map_fn, signal)


class TFSpeechFeaturizer(metaclass=abc.ABCMeta):
    def __init__(self, speech_config: dict):
        """
        speech_config = {
            "sample_rate": int,
            "frame_ms": int,
            "stride_ms": int,
            "num_feature_bins": int,
            "feature_type": str,
            "delta": bool,
            "delta_delta": bool,
            "pitch": bool,
            "normalize_signal": bool,
            "normalize_feature": bool,
            "normalize_per_frame": bool
        }
        """
        # Samples
        self.sample_rate = speech_config.get("sample_rate", 16000)
        self.frame_length = int(self.sample_rate * (speech_config.get("frame_ms", 25) / 1000))
        self.frame_step = int(self.sample_rate * (speech_config.get("stride_ms", 10) / 1000))
        # Features
        self.num_feature_bins = speech_config.get("num_feature_bins", 80)
        self.feature_type = speech_config.get("feature_type", "log_mel_spectrogram")
        self.preemphasis = speech_config.get("preemphasis", None)
        self.top_db = speech_config.get("top_db", 80.0)
        # Normalization
        self.normalize_signal = speech_config.get("normalize_signal", True)
        self.normalize_feature = speech_config.get("normalize_feature", True)
        self.normalize_per_frame = speech_config.get("normalize_per_frame", False)
        self.center = speech_config.get("center", True)
        # Length
        self.max_length = 0

    @property
    def shape(self) -> list:
        length = self.max_length if self.max_length > 0 else None
        return [length, self.num_feature_bins, 1]

    @property
    def nfft(self) -> int:
        """ Number of FFT """
        return 2 ** (self.frame_length - 1).bit_length()

    def get_length_from_duration(self, duration):
        nsamples = math.ceil(float(duration) * self.sample_rate)
        if self.center: nsamples += self.nfft
        return 1 + (nsamples - self.nfft) // self.frame_step  # https://www.tensorflow.org/api_docs/python/tf/signal/frame

    def update_length(self, length: int):
        self.max_length = max(self.max_length, length)

    def reset_length(self):
        self.max_length = 0

    def stft(self, signal):
        if self.center: signal = tf.pad(signal, [[self.nfft // 2, self.nfft // 2]], mode="REFLECT")
        window = tf.signal.hann_window(self.frame_length, periodic=True)
        left_pad = (self.nfft - self.frame_length) // 2
        right_pad = self.nfft - self.frame_length - left_pad
        window = tf.pad(window, [[left_pad, right_pad]])
        framed_signals = tf.signal.frame(signal, frame_length=self.nfft, frame_step=self.frame_step)
        framed_signals *= window
        return tf.square(tf.abs(tf.signal.rfft(framed_signals, [self.nfft])))

    def power_to_db(self, S, amin=1e-10):
        log_spec = 10.0 * math_util.log10(tf.maximum(amin, S))
        log_spec -= 10.0 * math_util.log10(tf.maximum(amin, 1.0))

        if self.top_db is not None:
            if self.top_db < 0:
                raise ValueError('top_db must be non-negative')
            log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - self.top_db)

        return log_spec

    def extract(self, signal: np.ndarray) -> np.ndarray:
        signal = np.asfortranarray(signal)
        features = self.tf_extract(tf.convert_to_tensor(signal, dtype=tf.float32))
        return features.numpy()

    def tf_extract(self, signal: tf.Tensor) -> tf.Tensor:
        """
        Extract speech features from signals (for using in tflite)
        Args:
            signal: tf.Tensor with shape [None]

        Returns:
            features: tf.Tensor with shape [T, F, 1]
        """
        if self.normalize_signal:
            signal = tf_normalize_signal(signal)
        signal = tf_preemphasis(signal, self.preemphasis)

        if self.feature_type == "log_mel_spectrogram":
            features = self.compute_log_mel_spectrogram(signal)
        else:
            raise ValueError("feature_type must be 'log_mel_spectrogram'")

        features = tf.expand_dims(features, axis=-1)

        if self.normalize_feature:
            features = tf_normalize_audio_features(features, per_frame=self.normalize_per_frame)

        return features

    def compute_log_mel_spectrogram(self, signal):
        spectrogram = self.stft(signal)
        linear_to_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
            num_mel_bins=self.num_feature_bins,
            num_spectrogram_bins=spectrogram.shape[-1],
            sample_rate=self.sample_rate,
            lower_edge_hertz=0.0, upper_edge_hertz=(self.sample_rate / 2)
        )
        mel_spectrogram = tf.tensordot(spectrogram, linear_to_weight_matrix, 1)
        return self.power_to_db(mel_spectrogram)