asr_dataset.py 9.17 KB
Newer Older
Sehoon Kim's avatar
Sehoon Kim committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import abc
from typing import Union
import tqdm
import numpy as np
import tensorflow as tf

from ..featurizers.speech_featurizers import (
    load_and_convert_to_wav, 
    read_raw_audio, 
    tf_read_raw_audio, 
    TFSpeechFeaturizer
)
from ..featurizers.text_featurizers import TextFeaturizer
from ..utils import feature_util, file_util, math_util, data_util

logger = tf.get_logger()


BUFFER_SIZE = 10000
AUTOTUNE = tf.data.experimental.AUTOTUNE


class BaseDataset(metaclass=abc.ABCMeta):
    """ Based dataset for all models """

    def __init__(
        self,
        data_paths: list,
        cache: bool = False,
        shuffle: bool = False,
        buffer_size: int = BUFFER_SIZE,
        indefinite: bool = False,
        drop_remainder: bool = True,
        stage: str = "train",
        **kwargs,
    ):
        self.data_paths = data_paths or []
        if not isinstance(self.data_paths, list):
            raise ValueError('data_paths must be a list of string paths')
        self.cache = cache  # whether to cache transformed dataset to memory
        self.shuffle = shuffle  # whether to shuffle tf.data.Dataset
        if buffer_size <= 0 and shuffle:
            raise ValueError("buffer_size must be positive when shuffle is on")
        self.buffer_size = buffer_size  # shuffle buffer size
        self.stage = stage  # for defining tfrecords files
        self.drop_remainder = drop_remainder  # whether to drop remainder for multi gpu training
        self.indefinite = indefinite  # Whether to make dataset repeat indefinitely -> avoid the potential last partial batch
        self.total_steps = None  # for better training visualization

    @abc.abstractmethod
    def parse(self, *args, **kwargs):
        raise NotImplementedError()

    @abc.abstractmethod
    def create(self, batch_size):
        raise NotImplementedError()


class ASRDataset(BaseDataset):
    """ Dataset for ASR using Generator """

    def __init__(
        self,
        stage: str,
        speech_featurizer: TFSpeechFeaturizer,
        text_featurizer: TextFeaturizer,
        data_paths: list,
        cache: bool = False,
        shuffle: bool = False,
        indefinite: bool = False,
        drop_remainder: bool = True,
        buffer_size: int = BUFFER_SIZE,
        input_padding_length: int = 3300,
        label_padding_length: int = 530,
        **kwargs,
    ):
        super().__init__(
            data_paths=data_paths, 
            cache=cache, shuffle=shuffle, stage=stage, buffer_size=buffer_size,
            drop_remainder=drop_remainder, indefinite=indefinite
        )
        self.speech_featurizer = speech_featurizer
        self.text_featurizer = text_featurizer
        self.input_padding_length = input_padding_length
        self.label_padding_length = label_padding_length


    # -------------------------------- ENTRIES -------------------------------------

    def read_entries(self):
        if hasattr(self, "entries") and len(self.entries) > 0: return
        self.entries = []
        for file_path in self.data_paths:
            logger.info(f"Reading {file_path} ...")
            with tf.io.gfile.GFile(file_path, "r") as f:
                temp_lines = f.read().splitlines()
                # Skip the header of tsv file
                self.entries += temp_lines[1:]
        # The files is "\t" seperated
        self.entries = [line.split("\t", 2) for line in self.entries]
        for i, line in enumerate(self.entries):
            self.entries[i][-1] = " ".join([str(x) for x in self.text_featurizer.extract(line[-1]).numpy()])
        self.entries = np.array(self.entries)
        if self.shuffle: np.random.shuffle(self.entries)  # Mix transcripts.tsv
        self.total_steps = len(self.entries)

    # -------------------------------- LOAD AND PREPROCESS -------------------------------------

    def generator(self):
        for path, _, indices in self.entries:
            audio = load_and_convert_to_wav(path).numpy()
            yield bytes(path, "utf-8"), audio, bytes(indices, "utf-8")


    def tf_preprocess(self, path: tf.Tensor, audio: tf.Tensor, indices: tf.Tensor):
        with tf.device("/CPU:0"):
            signal = tf_read_raw_audio(audio, self.speech_featurizer.sample_rate)
            features = self.speech_featurizer.tf_extract(signal)
            input_length = tf.cast(tf.shape(features)[0], tf.int32)

            label = tf.strings.to_number(tf.strings.split(indices), out_type=tf.int32)
            label_length = tf.cast(tf.shape(label)[0], tf.int32)

            prediction = self.text_featurizer.prepand_blank(label)
            prediction_length = tf.cast(tf.shape(prediction)[0], tf.int32)

            return path, features, input_length, label, label_length, prediction, prediction_length

    def parse(self, path: tf.Tensor, audio: tf.Tensor, indices: tf.Tensor):
        """
        Returns:
            path, features, input_lengths, labels, label_lengths, pred_inp
        """
        data = self.tf_preprocess(path, audio, indices)
        _, features, input_length, label, label_length, prediction, prediction_length = data
        return (
            data_util.create_inputs(
                inputs=features,
                inputs_length=input_length,
                predictions=prediction,
                predictions_length=prediction_length
            ),
            data_util.create_labels(
                labels=label,
                labels_length=label_length
            )
        )


    def process(self, dataset, batch_size):
        dataset = dataset.map(self.parse, num_parallel_calls=AUTOTUNE)
        self.total_steps = math_util.get_num_batches(self.total_steps, batch_size, drop_remainders=self.drop_remainder)
        if self.cache:
            dataset = dataset.cache()

        if self.shuffle:
            dataset = dataset.shuffle(self.buffer_size, reshuffle_each_iteration=True)

        if self.indefinite and self.total_steps:
            dataset = dataset.repeat()

        dataset = dataset.padded_batch(
            batch_size=batch_size,
            padded_shapes=(
                data_util.create_inputs(
                    inputs=tf.TensorShape([self.input_padding_length, 80, 1]),
                    inputs_length=tf.TensorShape([]),
                    predictions=tf.TensorShape([self.label_padding_length]),
                    predictions_length=tf.TensorShape([])
                ),
                data_util.create_labels(
                    labels=tf.TensorShape([self.label_padding_length]),
                    labels_length=tf.TensorShape([])
                ),
            ),
            padding_values=(
                data_util.create_inputs(
                    inputs=0.0,
                    inputs_length=0,
                    predictions=self.text_featurizer.blank,
                    predictions_length=0
                ),
                data_util.create_labels(
                    labels=self.text_featurizer.blank,
                    labels_length=0
                )
            ),
            drop_remainder=self.drop_remainder
        )

        # PREFETCH to improve speed of input length
        dataset = dataset.prefetch(AUTOTUNE)
        return dataset

    def create(self, batch_size: int):
        self.read_entries()
        if not self.total_steps or self.total_steps == 0: return print("Couldn't create")
        dataset = tf.data.Dataset.from_generator(
            self.generator,
            output_types=(tf.string, tf.string, tf.string),
            output_shapes=(tf.TensorShape([]), tf.TensorShape([]), tf.TensorShape([]))
        )
        return self.process(dataset, batch_size)


class ASRSliceDataset(ASRDataset):
    """ Dataset for ASR using Slice """

    @staticmethod
    def load(record: tf.Tensor):
        def fn(path: bytes): return load_and_convert_to_wav(path.decode("utf-8")).numpy()
        audio = tf.numpy_function(fn, inp=[record[0]], Tout=tf.string)
        return record[0], audio, record[2]

    def create(self, batch_size: int):
        self.read_entries()
        if not self.total_steps or self.total_steps == 0: return None
        dataset = tf.data.Dataset.from_tensor_slices(self.entries)
        dataset = dataset.map(self.load, num_parallel_calls=AUTOTUNE)
        return self.process(dataset, batch_size)

    def preprocess_dataset(self, tfrecord_path, shard_size=0, max_len=None):
        self.read_entries()
        if not self.total_steps or self.total_steps == 0: return None
        logger.info(f"Preprocess dataset")
        dataset = tf.data.Dataset.from_tensor_slices(self.entries)
        dataset = dataset.map(self.load, num_parallel_calls=AUTOTUNE)
        self.create_preprocessed_tfrecord(dataset, tfrecord_path, shard_size, max_len)