benchmark.py 3.51 KB
Newer Older
“change”'s avatar
“change” committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import SpeechT5Processor, SpeechT5ForSpeechToText
from datasets import load_dataset, Audio
import time
import argparse
import os 

current_directory = os.path.dirname(os.path.realpath(__file__))


class AudioDataset(Dataset):
    def __init__(self, dataset, processor, sampling_rate):
        self.dataset = dataset
        self.processor = processor
        self.sampling_rate = sampling_rate

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        audio = self.dataset[idx]["audio"]["array"]
        sample = self.processor(audio=audio, sampling_rate=self.sampling_rate, return_tensors="pt")
        return {"input_values": sample["input_values"].squeeze(0)}  # 移除多余的维度

def collate_fn(batch):
    # 自动填充序列,确保每个批次中的音频长度相同
    input_values = [item["input_values"] for item in batch]
    input_values = torch.nn.utils.rnn.pad_sequence(input_values, batch_first=True)
    return {"input_values": input_values}

def main(opt):
    # 加载数据集
    dataset = load_dataset(opt.dataset_script, 'clean',
                           cache_dir=opt.dataset_dir, split="test")
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))  # 确保音频数据格式正确

    # 获取采样率
    sampling_rate = 16000

    # 初始化处理器和模型
    processor = SpeechT5Processor.from_pretrained(opt.model_path)
    model = SpeechT5ForSpeechToText.from_pretrained(opt.model_path).to('cuda')  # 将模型移动到GPU上

    # 设置批次大小
    batch_size = opt.batch_size

    # 创建数据加载器
    dataloader = DataLoader(
        AudioDataset(dataset, processor, sampling_rate),
        batch_size=batch_size,
        shuffle=False,
        collate_fn=collate_fn
    )

    # 进行推理
    all_transcriptions = []
    with torch.no_grad():
        for batch in dataloader:
            size = batch['input_values'].size()
            inputs = {k: v.to('cuda') for k, v in batch.items()}  # 将输入数据移动到GPU上
            
            #开始计时
            start = time.time()

            predicted_ids = model.generate(**inputs, max_length=400)
            transcription_batch = processor.batch_decode(predicted_ids, skip_special_tokens=True)
            
            #结束计时
            end = time.time()
            
            all_transcriptions.extend(transcription_batch)
            break

        resume_time = end - start
        samples_per_second =  batch_size / resume_time 


    # 输出结果
    # for idx, transcription in enumerate(all_transcriptions):
    #     print(f"Sample {idx}: {transcription}")
    
    print(f"resume_time: {resume_time: .2f}, \nsamples_per_second: {samples_per_second: .2f}")

def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', '--model-path', type=str,
                         default="/public/home/changhl/py_project/speecht5_pytorch/speecht5_asr", help="initial model path")
    parser.add_argument('-ds', '--dataset_script', type=str, default=os.path.join(current_directory, "librispeech_asr_test.py"), help="speech scriot")
    parser.add_argument('-dr', '--dataset_dir', type=str, default=current_directory, help="speech scriot")
    parser.add_argument('-b', '--batch_size', type=int, default=32, help="the batch_size of speech")
    opt = parser.parse_known_args()[0] if known else parser.parse_args()
    return opt


if __name__ == "__main__":
    main(parse_opt())