Commit ee26c6b9 authored by pangjm's avatar pangjm
Browse files

Merge branch 'master' of github.com:open-mmlab/mmdetection

parents 22298f3c cd35200f
......@@ -32,6 +32,8 @@ class CustomDataset(Dataset):
The `ann` field is optional for testing.
"""
CLASSES = None
def __init__(self,
ann_file,
img_prefix,
......@@ -45,6 +47,8 @@ class CustomDataset(Dataset):
with_crowd=True,
with_label=True,
test_mode=False):
# prefix of images path
self.img_prefix = img_prefix
# load annotations (and proposals)
self.img_infos = self.load_annotations(ann_file)
if proposal_file is not None:
......@@ -58,8 +62,6 @@ class CustomDataset(Dataset):
if self.proposals is not None:
self.proposals = [self.proposals[i] for i in valid_inds]
# prefix of images path
self.img_prefix = img_prefix
# (long_edge, short_edge) or [(long1, short1), (long2, short2), ...]
self.img_scales = img_scale if isinstance(img_scale,
list) else [img_scale]
......
......@@ -6,12 +6,14 @@ class RepeatDataset(object):
def __init__(self, dataset, times):
self.dataset = dataset
self.times = times
self.CLASSES = dataset.CLASSES
if hasattr(self.dataset, 'flag'):
self.flag = np.tile(self.dataset.flag, times)
self._original_length = len(self.dataset)
self._ori_len = len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx % self._original_length]
return self.dataset[idx % self._ori_len]
def __len__(self):
return self.times * self._original_length
return self.times * self._ori_len
from .xml_style import XMLDataset
class VOCDataset(XMLDataset):
CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car',
'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train',
'tvmonitor')
def __init__(self, **kwargs):
super(VOCDataset, self).__init__(**kwargs)
if 'VOC2007' in self.img_prefix:
self.year = 2007
elif 'VOC2012' in self.img_prefix:
self.year = 2012
else:
raise ValueError('Cannot infer dataset year from img_prefix')
import os.path as osp
import xml.etree.ElementTree as ET
import mmcv
import numpy as np
from .custom import CustomDataset
class XMLDataset(CustomDataset):
def __init__(self, **kwargs):
super(XMLDataset, self).__init__(**kwargs)
self.cat2label = {cat: i + 1 for i, cat in enumerate(self.CLASSES)}
def load_annotations(self, ann_file):
img_infos = []
img_ids = mmcv.list_from_file(ann_file)
for img_id in img_ids:
filename = 'JPEGImages/{}.jpg'.format(img_id)
xml_path = osp.join(self.img_prefix, 'Annotations',
'{}.xml'.format(img_id))
tree = ET.parse(xml_path)
root = tree.getroot()
size = root.find('size')
width = int(size.find('width').text)
height = int(size.find('height').text)
img_infos.append(
dict(id=img_id, filename=filename, width=width, height=height))
return img_infos
def get_ann_info(self, idx):
img_id = self.img_infos[idx]['id']
xml_path = osp.join(self.img_prefix, 'Annotations',
'{}.xml'.format(img_id))
tree = ET.parse(xml_path)
root = tree.getroot()
bboxes = []
labels = []
bboxes_ignore = []
labels_ignore = []
for obj in root.findall('object'):
name = obj.find('name').text
label = self.cat2label[name]
difficult = int(obj.find('difficult').text)
bnd_box = obj.find('bndbox')
bbox = [
int(bnd_box.find('xmin').text),
int(bnd_box.find('ymin').text),
int(bnd_box.find('xmax').text),
int(bnd_box.find('ymax').text)
]
if difficult:
bboxes_ignore.append(bbox)
labels_ignore.append(label)
else:
bboxes.append(bbox)
labels.append(label)
if not bboxes:
bboxes = np.zeros((0, 4))
labels = np.zeros((0, ))
else:
bboxes = np.array(bboxes, ndmin=2) - 1
labels = np.array(labels)
if not bboxes_ignore:
bboxes_ignore = np.zeros((0, 4))
labels_ignore = np.zeros((0, ))
else:
bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1
labels_ignore = np.array(labels_ignore)
ann = dict(
bboxes=bboxes.astype(np.float32),
labels=labels.astype(np.int64),
bboxes_ignore=bboxes_ignore.astype(np.float32),
labels_ignore=labels_ignore.astype(np.int64))
return ann
......@@ -79,11 +79,11 @@ class BBoxHead(nn.Module):
return cls_reg_targets
def loss(self, cls_score, bbox_pred, labels, label_weights, bbox_targets,
bbox_weights):
bbox_weights, reduce=True):
losses = dict()
if cls_score is not None:
losses['loss_cls'] = weighted_cross_entropy(
cls_score, labels, label_weights)
cls_score, labels, label_weights, reduce=reduce)
losses['acc'] = accuracy(cls_score, labels)
if bbox_pred is not None:
losses['loss_reg'] = weighted_smoothl1(
......
......@@ -99,11 +99,12 @@ class BaseDetector(nn.Module):
if isinstance(dataset, str):
class_names = get_classes(dataset)
elif isinstance(dataset, list):
elif isinstance(dataset, (list, tuple)) or dataset is None:
class_names = dataset
else:
raise TypeError('dataset must be a valid dataset name or a list'
' of class names, not {}'.format(type(dataset)))
raise TypeError(
'dataset must be a valid dataset name or a sequence'
' of class names, not {}'.format(type(dataset)))
for img, img_meta in zip(imgs, img_metas):
h, w, _ = img_meta['img_shape']
......
......@@ -4,7 +4,7 @@ import torch.nn as nn
from .base import BaseDetector
from .test_mixins import RPNTestMixin, BBoxTestMixin, MaskTestMixin
from .. import builder
from mmdet.core import (assign_and_sample, bbox2roi, bbox2result, multi_apply)
from mmdet.core import bbox2roi, bbox2result, build_assigner, build_sampler
class TwoStageDetector(BaseDetector, RPNTestMixin, BBoxTestMixin,
......@@ -102,13 +102,22 @@ class TwoStageDetector(BaseDetector, RPNTestMixin, BBoxTestMixin,
# assign gts and sample proposals
if self.with_bbox or self.with_mask:
assign_results, sampling_results = multi_apply(
assign_and_sample,
proposal_list,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
cfg=self.train_cfg.rcnn)
bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner)
bbox_sampler = build_sampler(
self.train_cfg.rcnn.sampler, context=self)
num_imgs = img.size(0)
sampling_results = []
for i in range(num_imgs):
assign_result = bbox_assigner.assign(
proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i],
gt_labels[i])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[i],
gt_bboxes[i],
gt_labels[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
if self.with_bbox:
......
......@@ -97,7 +97,11 @@ class FCNMaskHead(nn.Module):
def loss(self, mask_pred, mask_targets, labels):
loss = dict()
loss_mask = mask_cross_entropy(mask_pred, mask_targets, labels)
if self.class_agnostic:
loss_mask = mask_cross_entropy(mask_pred, mask_targets,
torch.zeros_like(labels))
else:
loss_mask = mask_cross_entropy(mask_pred, mask_targets, labels)
loss['loss_mask'] = loss_mask
return loss
......
......@@ -14,15 +14,16 @@ from mmdet.models import build_detector, detectors
def single_test(model, data_loader, show=False):
model.eval()
results = []
prog_bar = mmcv.ProgressBar(len(data_loader.dataset))
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=not show, **data)
results.append(result)
if show:
model.module.show_result(data, result,
data_loader.dataset.img_norm_cfg)
model.module.show_result(data, result, dataset.img_norm_cfg,
dataset.CLASSES)
batch_size = data['img'][0].size(0)
for _ in range(batch_size):
......
from argparse import ArgumentParser
import mmcv
import numpy as np
from mmdet import datasets
from mmdet.core import eval_map
def voc_eval(result_file, dataset, iou_thr=0.5):
det_results = mmcv.load(result_file)
gt_bboxes = []
gt_labels = []
gt_ignore = []
for i in range(len(dataset)):
ann = dataset.get_ann_info(i)
bboxes = ann['bboxes']
labels = ann['labels']
if 'bboxes_ignore' in ann:
ignore = np.concatenate([
np.zeros(bboxes.shape[0], dtype=np.bool),
np.ones(ann['bboxes_ignore'].shape[0], dtype=np.bool)
])
gt_ignore.append(ignore)
bboxes = np.vstack([bboxes, ann['bboxes_ignore']])
labels = np.concatenate([labels, ann['labels_ignore']])
gt_bboxes.append(bboxes)
gt_labels.append(labels)
if not gt_ignore:
gt_ignore = gt_ignore
if hasattr(dataset, 'year') and dataset.year == 2007:
dataset_name = 'voc07'
else:
dataset_name = dataset.CLASSES
eval_map(
det_results,
gt_bboxes,
gt_labels,
gt_ignore=gt_ignore,
scale_ranges=None,
iou_thr=iou_thr,
dataset=dataset_name,
print_summary=True)
def main():
parser = ArgumentParser(description='VOC Evaluation')
parser.add_argument('result', help='result file path')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--iou-thr',
type=float,
default=0.5,
help='IoU threshold for evaluation')
args = parser.parse_args()
cfg = mmcv.Config.fromfile(args.config)
test_dataset = mmcv.runner.obj_from_dict(cfg.data.test, datasets)
voc_eval(args.result, test_dataset, args.iou_thr)
if __name__ == '__main__':
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment