"examples/vscode:/vscode.git/clone" did not exist on "c222570a9b47901266fecf34222f540870c3bb1b"
Unverified Commit d2483e15 authored by Kai Chen's avatar Kai Chen Committed by GitHub
Browse files

Use isort to sort imports and setup travis (#1085)

* add isort config

* use isort to sort imports

* add isort to travis
parent 864880de
[isort]
line_length = 79
multi_line_output = 0
known_first_party = mmdet
known_third_party = mmcv,numpy,matplotlib,pycocotools,six,seaborn,terminaltables,torch,torchvision
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY
\ No newline at end of file
...@@ -2,7 +2,7 @@ dist: xenial ...@@ -2,7 +2,7 @@ dist: xenial
language: python language: python
install: install:
- pip install flake8 yapf - pip install isort flake8 yapf
python: python:
- "3.5" - "3.5"
...@@ -11,4 +11,5 @@ python: ...@@ -11,4 +11,5 @@ python:
script: script:
- flake8 - flake8
- isort -rc --diff mmdet/ tools/
- yapf -r -d --style .style.yapf mmdet/ tools/ - yapf -r -d --style .style.yapf mmdet/ tools/
\ No newline at end of file
from __future__ import division from __future__ import division
import re import re
from collections import OrderedDict from collections import OrderedDict
import torch import torch
from mmcv.runner import Runner, DistSamplerSeedHook, obj_from_dict
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import DistSamplerSeedHook, Runner, obj_from_dict
from mmdet import datasets from mmdet import datasets
from mmdet.core import (DistOptimizerHook, DistEvalmAPHook, from mmdet.core import (CocoDistEvalmAPHook, CocoDistEvalRecallHook,
CocoDistEvalRecallHook, CocoDistEvalmAPHook, DistEvalmAPHook, DistOptimizerHook, Fp16OptimizerHook)
Fp16OptimizerHook) from mmdet.datasets import DATASETS, build_dataloader
from mmdet.datasets import build_dataloader, DATASETS
from mmdet.models import RPN from mmdet.models import RPN
from .env import get_root_logger from .env import get_root_logger
......
import torch import torch
from ..bbox import assign_and_sample, build_assigner, PseudoSampler, bbox2delta from ..bbox import PseudoSampler, assign_and_sample, bbox2delta, build_assigner
from ..utils import multi_apply from ..utils import multi_apply
......
import torch import torch
from ..bbox import build_assigner, build_sampler, PseudoSampler from ..bbox import PseudoSampler, build_assigner, build_sampler
from ..utils import unmap, multi_apply from ..utils import multi_apply, unmap
def calc_region(bbox, ratio, featmap_size=None): def calc_region(bbox, ratio, featmap_size=None):
......
import torch import torch
from .max_iou_assigner import MaxIoUAssigner
from ..geometry import bbox_overlaps from ..geometry import bbox_overlaps
from .max_iou_assigner import MaxIoUAssigner
class ApproxMaxIoUAssigner(MaxIoUAssigner): class ApproxMaxIoUAssigner(MaxIoUAssigner):
......
import torch import torch
from .base_assigner import BaseAssigner
from .assign_result import AssignResult
from ..geometry import bbox_overlaps from ..geometry import bbox_overlaps
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
class MaxIoUAssigner(BaseAssigner): class MaxIoUAssigner(BaseAssigner):
......
import torch import torch
from .transforms import bbox2delta
from ..utils import multi_apply from ..utils import multi_apply
from .transforms import bbox2delta
def bbox_target(pos_bboxes_list, def bbox_target(pos_bboxes_list,
......
from .base_sampler import BaseSampler
from ..assign_sampling import build_sampler from ..assign_sampling import build_sampler
from .base_sampler import BaseSampler
class CombinedSampler(BaseSampler): class CombinedSampler(BaseSampler):
......
import torch import torch
from .base_sampler import BaseSampler
from ..transforms import bbox2roi from ..transforms import bbox2roi
from .base_sampler import BaseSampler
class OHEMSampler(BaseSampler): class OHEMSampler(BaseSampler):
......
...@@ -5,14 +5,14 @@ import mmcv ...@@ -5,14 +5,14 @@ import mmcv
import numpy as np import numpy as np
import torch import torch
import torch.distributed as dist import torch.distributed as dist
from mmcv.parallel import collate, scatter
from mmcv.runner import Hook from mmcv.runner import Hook
from mmcv.parallel import scatter, collate
from pycocotools.cocoeval import COCOeval from pycocotools.cocoeval import COCOeval
from torch.utils.data import Dataset from torch.utils.data import Dataset
from .coco_utils import results2json, fast_eval_recall
from .mean_ap import eval_map
from mmdet import datasets from mmdet import datasets
from .coco_utils import fast_eval_recall, results2json
from .mean_ap import eval_map
class DistEvalHook(Hook): class DistEvalHook(Hook):
......
import copy import copy
import torch import torch
import torch.nn as nn import torch.nn as nn
from mmcv.runner import OptimizerHook from mmcv.runner import OptimizerHook
from .utils import cast_tensor_type
from ..utils.dist_utils import allreduce_grads from ..utils.dist_utils import allreduce_grads
from .utils import cast_tensor_type
class Fp16OptimizerHook(OptimizerHook): class Fp16OptimizerHook(OptimizerHook):
......
import torch
import numpy as np
import mmcv import mmcv
import numpy as np
import torch
def mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list, def mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list,
......
import torch
import numpy as np import numpy as np
import torch
from mmdet.ops import nms from mmdet.ops import nms
from ..bbox import bbox_mapping_back from ..bbox import bbox_mapping_back
......
from collections import OrderedDict from collections import OrderedDict
import torch.distributed as dist import torch.distributed as dist
from torch._utils import (_flatten_dense_tensors, _unflatten_dense_tensors,
_take_tensors)
from mmcv.runner import OptimizerHook from mmcv.runner import OptimizerHook
from torch._utils import (_flatten_dense_tensors, _take_tensors,
_unflatten_dense_tensors)
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
......
...@@ -6,11 +6,11 @@ import numpy as np ...@@ -6,11 +6,11 @@ import numpy as np
from mmcv.parallel import DataContainer as DC from mmcv.parallel import DataContainer as DC
from torch.utils.data import Dataset from torch.utils.data import Dataset
from .registry import DATASETS
from .transforms import (ImageTransform, BboxTransform, MaskTransform,
SegMapTransform, Numpy2Tensor)
from .utils import to_tensor, random_scale
from .extra_aug import ExtraAugmentation from .extra_aug import ExtraAugmentation
from .registry import DATASETS
from .transforms import (BboxTransform, ImageTransform, MaskTransform,
Numpy2Tensor, SegMapTransform)
from .utils import random_scale, to_tensor
@DATASETS.register_module @DATASETS.register_module
......
import platform import platform
from functools import partial from functools import partial
from mmcv.runner import get_dist_info
from mmcv.parallel import collate from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from .sampler import GroupSampler, DistributedGroupSampler, DistributedSampler from .sampler import DistributedGroupSampler, DistributedSampler, GroupSampler
if platform.system() != 'Windows': if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973 # https://github.com/pytorch/pytorch/issues/973
......
from __future__ import division from __future__ import division
import math import math
import torch
import numpy as np
import numpy as np
import torch
from mmcv.runner.utils import get_dist_info from mmcv.runner.utils import get_dist_info
from torch.utils.data import Sampler
from torch.utils.data import DistributedSampler as _DistributedSampler from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import Sampler
class DistributedSampler(_DistributedSampler): class DistributedSampler(_DistributedSampler):
......
...@@ -5,8 +5,8 @@ import torch ...@@ -5,8 +5,8 @@ import torch
import torch.nn as nn import torch.nn as nn
from mmcv.cnn import normal_init from mmcv.cnn import normal_init
from mmdet.core import (AnchorGenerator, anchor_target, delta2bbox, from mmdet.core import (AnchorGenerator, anchor_target, delta2bbox, force_fp32,
multi_apply, multiclass_nms, force_fp32) multi_apply, multiclass_nms)
from ..builder import build_loss from ..builder import build_loss
from ..registry import HEADS from ..registry import HEADS
......
...@@ -2,10 +2,10 @@ import torch ...@@ -2,10 +2,10 @@ import torch
import torch.nn as nn import torch.nn as nn
from mmcv.cnn import normal_init from mmcv.cnn import normal_init
from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32 from mmdet.core import distance2bbox, force_fp32, multi_apply, multiclass_nms
from ..builder import build_loss from ..builder import build_loss
from ..registry import HEADS from ..registry import HEADS
from ..utils import bias_init_with_prob, Scale, ConvModule from ..utils import ConvModule, Scale, bias_init_with_prob
INF = 1e8 INF = 1e8
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment