Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
c1e0884f
Commit
c1e0884f
authored
Jan 22, 2019
by
Kai Chen
Browse files
update backbone to support dcn
parent
d46124c6
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
1356 additions
and
24 deletions
+1356
-24
configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
+232
-0
configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
+215
-0
configs/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x.py
configs/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x.py
+161
-0
configs/dcn/faster_rcnn_dpool_r50_fpn_1x.py
configs/dcn/faster_rcnn_dpool_r50_fpn_1x.py
+162
-0
configs/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x.py
configs/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x.py
+161
-0
configs/dcn/faster_rcnn_mdpool_r50_fpn_1x.py
configs/dcn/faster_rcnn_mdpool_r50_fpn_1x.py
+162
-0
configs/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
configs/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
+173
-0
mmdet/models/backbones/resnet.py
mmdet/models/backbones/resnet.py
+90
-24
No files found.
configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'CascadeRCNN'
,
num_stages
=
3
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
dcn
=
dict
(
modulated
=
False
,
deformable_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
True
,
True
,
True
)),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
[
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
True
),
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.05
,
0.05
,
0.1
,
0.1
],
reg_class_agnostic
=
True
),
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.033
,
0.033
,
0.067
,
0.067
],
reg_class_agnostic
=
True
)
],
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
14
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
81
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
[
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.6
,
min_pos_iou
=
0.6
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.7
,
min_pos_iou
=
0.7
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
)
],
stage_loss_weights
=
[
1
,
0.5
,
0.25
])
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
),
keep_all_stages
=
False
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
True
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
True
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
True
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'CascadeRCNN'
,
num_stages
=
3
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
dcn
=
dict
(
modulated
=
False
,
deformable_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
True
,
True
,
True
)),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
[
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
True
),
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.05
,
0.05
,
0.1
,
0.1
],
reg_class_agnostic
=
True
),
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.033
,
0.033
,
0.067
,
0.067
],
reg_class_agnostic
=
True
)
])
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
[
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.6
,
min_pos_iou
=
0.6
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.7
,
min_pos_iou
=
0.7
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)
],
stage_loss_weights
=
[
1
,
0.5
,
0.25
])
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
),
keep_all_stages
=
False
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/cascade_rcnn_dconv_c3-c5_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
dcn
=
dict
(
modulated
=
False
,
deformable_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
True
,
True
,
True
)),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_dconv_c3-c5_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/dcn/faster_rcnn_dpool_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'DeformRoIPoolingPack'
,
out_size
=
7
,
out_channels
=
256
,
no_trans
=
False
,
group_size
=
1
,
trans_std
=
0.1
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_dpool_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
dcn
=
dict
(
modulated
=
True
,
deformable_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
True
,
True
,
True
)),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_mdconv_c3-c5_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/dcn/faster_rcnn_mdpool_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'ModulatedDeformRoIPoolingPack'
,
out_size
=
7
,
out_channels
=
256
,
no_trans
=
False
,
group_size
=
1
,
trans_std
=
0.1
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_mdpool_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
0 → 100644
View file @
c1e0884f
# model settings
model
=
dict
(
type
=
'MaskRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
dcn
=
dict
(
modulated
=
False
,
deformable_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
True
,
True
,
True
)),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
),
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
14
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
81
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
))
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
True
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
True
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/mask_rcnn_dconv_c3-c5_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
mmdet/models/backbones/resnet.py
View file @
c1e0884f
...
@@ -5,6 +5,9 @@ import torch.utils.checkpoint as cp
...
@@ -5,6 +5,9 @@ import torch.utils.checkpoint as cp
from
mmcv.cnn
import
constant_init
,
kaiming_init
from
mmcv.cnn
import
constant_init
,
kaiming_init
from
mmcv.runner
import
load_checkpoint
from
mmcv.runner
import
load_checkpoint
from
mmdet.ops
import
DeformConv
,
ModulatedDeformConv
from
..registry
import
BACKBONES
from
..utils
import
build_norm_layer
from
..utils
import
build_norm_layer
...
@@ -86,16 +89,20 @@ class Bottleneck(nn.Module):
...
@@ -86,16 +89,20 @@ class Bottleneck(nn.Module):
downsample
=
None
,
downsample
=
None
,
style
=
'pytorch'
,
style
=
'pytorch'
,
with_cp
=
False
,
with_cp
=
False
,
normalize
=
dict
(
type
=
'BN'
)):
normalize
=
dict
(
type
=
'BN'
),
dcn
=
None
):
"""Bottleneck block for ResNet.
"""Bottleneck block for ResNet.
If style is "pytorch", the stride-two layer is the 3x3 conv layer,
If style is "pytorch", the stride-two layer is the 3x3 conv layer,
if it is "caffe", the stride-two layer is the first 1x1 conv layer.
if it is "caffe", the stride-two layer is the first 1x1 conv layer.
"""
"""
super
(
Bottleneck
,
self
).
__init__
()
super
(
Bottleneck
,
self
).
__init__
()
assert
style
in
[
'pytorch'
,
'caffe'
]
assert
style
in
[
'pytorch'
,
'caffe'
]
assert
dcn
is
None
or
isinstance
(
dcn
,
dict
)
self
.
inplanes
=
inplanes
self
.
inplanes
=
inplanes
self
.
planes
=
planes
self
.
planes
=
planes
self
.
normalize
=
normalize
self
.
normalize
=
normalize
self
.
dcn
=
dcn
self
.
with_dcn
=
dcn
is
not
None
if
style
==
'pytorch'
:
if
style
==
'pytorch'
:
self
.
conv1_stride
=
1
self
.
conv1_stride
=
1
self
.
conv2_stride
=
stride
self
.
conv2_stride
=
stride
...
@@ -105,9 +112,8 @@ class Bottleneck(nn.Module):
...
@@ -105,9 +112,8 @@ class Bottleneck(nn.Module):
self
.
norm1_name
,
norm1
=
build_norm_layer
(
normalize
,
planes
,
postfix
=
1
)
self
.
norm1_name
,
norm1
=
build_norm_layer
(
normalize
,
planes
,
postfix
=
1
)
self
.
norm2_name
,
norm2
=
build_norm_layer
(
normalize
,
planes
,
postfix
=
2
)
self
.
norm2_name
,
norm2
=
build_norm_layer
(
normalize
,
planes
,
postfix
=
2
)
self
.
norm3_name
,
norm3
=
build_norm_layer
(
normalize
,
self
.
norm3_name
,
norm3
=
build_norm_layer
(
planes
*
self
.
expansion
,
normalize
,
planes
*
self
.
expansion
,
postfix
=
3
)
postfix
=
3
)
self
.
conv1
=
nn
.
Conv2d
(
self
.
conv1
=
nn
.
Conv2d
(
inplanes
,
inplanes
,
...
@@ -116,14 +122,44 @@ class Bottleneck(nn.Module):
...
@@ -116,14 +122,44 @@ class Bottleneck(nn.Module):
stride
=
self
.
conv1_stride
,
stride
=
self
.
conv1_stride
,
bias
=
False
)
bias
=
False
)
self
.
add_module
(
self
.
norm1_name
,
norm1
)
self
.
add_module
(
self
.
norm1_name
,
norm1
)
self
.
conv2
=
nn
.
Conv2d
(
fallback_on_stride
=
False
planes
,
self
.
with_modulated_dcn
=
False
planes
,
if
self
.
with_dcn
:
kernel_size
=
3
,
fallback_on_stride
=
dcn
.
get
(
'fallback_on_stride'
,
False
)
stride
=
self
.
conv2_stride
,
self
.
with_modulated_dcn
=
dcn
.
get
(
'modulated'
,
False
)
padding
=
dilation
,
if
not
self
.
with_dcn
or
fallback_on_stride
:
dilation
=
dilation
,
self
.
conv2
=
nn
.
Conv2d
(
bias
=
False
)
planes
,
planes
,
kernel_size
=
3
,
stride
=
self
.
conv2_stride
,
padding
=
dilation
,
dilation
=
dilation
,
bias
=
False
)
else
:
deformable_groups
=
dcn
.
get
(
'deformable_groups'
,
1
)
if
not
self
.
with_modulated_dcn
:
conv_op
=
DeformConv
offset_channels
=
18
else
:
conv_op
=
ModulatedDeformConv
offset_channels
=
27
self
.
conv2_offset
=
nn
.
Conv2d
(
planes
,
deformable_groups
*
offset_channels
,
kernel_size
=
3
,
stride
=
self
.
conv2_stride
,
padding
=
dilation
,
dilation
=
dilation
)
self
.
conv2
=
conv_op
(
planes
,
planes
,
kernel_size
=
3
,
stride
=
self
.
conv2_stride
,
padding
=
dilation
,
dilation
=
dilation
,
deformable_groups
=
deformable_groups
,
bias
=
False
)
self
.
add_module
(
self
.
norm2_name
,
norm2
)
self
.
add_module
(
self
.
norm2_name
,
norm2
)
self
.
conv3
=
nn
.
Conv2d
(
self
.
conv3
=
nn
.
Conv2d
(
planes
,
planes
*
self
.
expansion
,
kernel_size
=
1
,
bias
=
False
)
planes
,
planes
*
self
.
expansion
,
kernel_size
=
1
,
bias
=
False
)
...
@@ -157,7 +193,16 @@ class Bottleneck(nn.Module):
...
@@ -157,7 +193,16 @@ class Bottleneck(nn.Module):
out
=
self
.
norm1
(
out
)
out
=
self
.
norm1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
if
not
self
.
with_dcn
:
out
=
self
.
conv2
(
out
)
elif
self
.
with_modulated_dcn
:
offset_mask
=
self
.
conv2_offset
(
out
)
offset
=
offset_mask
[:,
:
18
,
:,
:]
mask
=
offset_mask
[:,
-
9
:,
:,
:].
sigmoid
()
out
=
self
.
conv2
(
out
,
offset
,
mask
)
else
:
offset
=
self
.
conv2_offset
(
out
)
out
=
self
.
conv2
(
out
,
offset
)
out
=
self
.
norm2
(
out
)
out
=
self
.
norm2
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
relu
(
out
)
...
@@ -189,7 +234,8 @@ def make_res_layer(block,
...
@@ -189,7 +234,8 @@ def make_res_layer(block,
dilation
=
1
,
dilation
=
1
,
style
=
'pytorch'
,
style
=
'pytorch'
,
with_cp
=
False
,
with_cp
=
False
,
normalize
=
dict
(
type
=
'BN'
)):
normalize
=
dict
(
type
=
'BN'
),
dcn
=
None
):
downsample
=
None
downsample
=
None
if
stride
!=
1
or
inplanes
!=
planes
*
block
.
expansion
:
if
stride
!=
1
or
inplanes
!=
planes
*
block
.
expansion
:
downsample
=
nn
.
Sequential
(
downsample
=
nn
.
Sequential
(
...
@@ -212,16 +258,25 @@ def make_res_layer(block,
...
@@ -212,16 +258,25 @@ def make_res_layer(block,
downsample
,
downsample
,
style
=
style
,
style
=
style
,
with_cp
=
with_cp
,
with_cp
=
with_cp
,
normalize
=
normalize
))
normalize
=
normalize
,
dcn
=
dcn
))
inplanes
=
planes
*
block
.
expansion
inplanes
=
planes
*
block
.
expansion
for
i
in
range
(
1
,
blocks
):
for
i
in
range
(
1
,
blocks
):
layers
.
append
(
layers
.
append
(
block
(
inplanes
,
planes
,
1
,
dilation
,
style
=
style
,
block
(
with_cp
=
with_cp
,
normalize
=
normalize
))
inplanes
,
planes
,
1
,
dilation
,
style
=
style
,
with_cp
=
with_cp
,
normalize
=
normalize
,
dcn
=
dcn
))
return
nn
.
Sequential
(
*
layers
)
return
nn
.
Sequential
(
*
layers
)
@
BACKBONES
.
register_module
class
ResNet
(
nn
.
Module
):
class
ResNet
(
nn
.
Module
):
"""ResNet backbone.
"""ResNet backbone.
...
@@ -262,10 +317,10 @@ class ResNet(nn.Module):
...
@@ -262,10 +317,10 @@ class ResNet(nn.Module):
out_indices
=
(
0
,
1
,
2
,
3
),
out_indices
=
(
0
,
1
,
2
,
3
),
style
=
'pytorch'
,
style
=
'pytorch'
,
frozen_stages
=-
1
,
frozen_stages
=-
1
,
normalize
=
dict
(
normalize
=
dict
(
type
=
'BN'
,
frozen
=
False
),
type
=
'BN'
,
frozen
=
False
),
norm_eval
=
True
,
norm_eval
=
True
,
dcn
=
None
,
stage_with_dcn
=
(
False
,
False
,
False
,
False
),
with_cp
=
False
,
with_cp
=
False
,
zero_init_residual
=
True
):
zero_init_residual
=
True
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
()
...
@@ -276,7 +331,8 @@ class ResNet(nn.Module):
...
@@ -276,7 +331,8 @@ class ResNet(nn.Module):
assert
num_stages
>=
1
and
num_stages
<=
4
assert
num_stages
>=
1
and
num_stages
<=
4
self
.
strides
=
strides
self
.
strides
=
strides
self
.
dilations
=
dilations
self
.
dilations
=
dilations
assert
len
(
strides
)
==
len
(
dilations
)
==
num_stages
assert
len
(
strides
)
==
len
(
dilations
)
==
len
(
stage_with_dcn
)
==
num_stages
self
.
out_indices
=
out_indices
self
.
out_indices
=
out_indices
assert
max
(
out_indices
)
<
num_stages
assert
max
(
out_indices
)
<
num_stages
self
.
style
=
style
self
.
style
=
style
...
@@ -284,6 +340,8 @@ class ResNet(nn.Module):
...
@@ -284,6 +340,8 @@ class ResNet(nn.Module):
self
.
normalize
=
normalize
self
.
normalize
=
normalize
self
.
with_cp
=
with_cp
self
.
with_cp
=
with_cp
self
.
norm_eval
=
norm_eval
self
.
norm_eval
=
norm_eval
self
.
dcn
=
dcn
self
.
stage_with_dcn
=
stage_with_dcn
self
.
zero_init_residual
=
zero_init_residual
self
.
zero_init_residual
=
zero_init_residual
self
.
block
,
stage_blocks
=
self
.
arch_settings
[
depth
]
self
.
block
,
stage_blocks
=
self
.
arch_settings
[
depth
]
self
.
stage_blocks
=
stage_blocks
[:
num_stages
]
self
.
stage_blocks
=
stage_blocks
[:
num_stages
]
...
@@ -295,6 +353,7 @@ class ResNet(nn.Module):
...
@@ -295,6 +353,7 @@ class ResNet(nn.Module):
for
i
,
num_blocks
in
enumerate
(
self
.
stage_blocks
):
for
i
,
num_blocks
in
enumerate
(
self
.
stage_blocks
):
stride
=
strides
[
i
]
stride
=
strides
[
i
]
dilation
=
dilations
[
i
]
dilation
=
dilations
[
i
]
dcn
=
self
.
dcn
if
self
.
stage_with_dcn
[
i
]
else
None
planes
=
64
*
2
**
i
planes
=
64
*
2
**
i
res_layer
=
make_res_layer
(
res_layer
=
make_res_layer
(
self
.
block
,
self
.
block
,
...
@@ -305,7 +364,8 @@ class ResNet(nn.Module):
...
@@ -305,7 +364,8 @@ class ResNet(nn.Module):
dilation
=
dilation
,
dilation
=
dilation
,
style
=
self
.
style
,
style
=
self
.
style
,
with_cp
=
with_cp
,
with_cp
=
with_cp
,
normalize
=
normalize
)
normalize
=
normalize
,
dcn
=
dcn
)
self
.
inplanes
=
planes
*
self
.
block
.
expansion
self
.
inplanes
=
planes
*
self
.
block
.
expansion
layer_name
=
'layer{}'
.
format
(
i
+
1
)
layer_name
=
'layer{}'
.
format
(
i
+
1
)
self
.
add_module
(
layer_name
,
res_layer
)
self
.
add_module
(
layer_name
,
res_layer
)
...
@@ -323,8 +383,8 @@ class ResNet(nn.Module):
...
@@ -323,8 +383,8 @@ class ResNet(nn.Module):
def
_make_stem_layer
(
self
):
def
_make_stem_layer
(
self
):
self
.
conv1
=
nn
.
Conv2d
(
self
.
conv1
=
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
3
,
bias
=
False
)
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
3
,
bias
=
False
)
self
.
norm1_name
,
norm1
=
build_norm_layer
(
self
.
normalize
,
self
.
norm1_name
,
norm1
=
build_norm_layer
(
64
,
postfix
=
1
)
self
.
normalize
,
64
,
postfix
=
1
)
self
.
add_module
(
self
.
norm1_name
,
norm1
)
self
.
add_module
(
self
.
norm1_name
,
norm1
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
...
@@ -351,6 +411,12 @@ class ResNet(nn.Module):
...
@@ -351,6 +411,12 @@ class ResNet(nn.Module):
elif
isinstance
(
m
,
(
nn
.
BatchNorm2d
,
nn
.
GroupNorm
)):
elif
isinstance
(
m
,
(
nn
.
BatchNorm2d
,
nn
.
GroupNorm
)):
constant_init
(
m
,
1
)
constant_init
(
m
,
1
)
if
self
.
dcn
is
not
None
:
for
m
in
self
.
modules
():
if
isinstance
(
m
,
Bottleneck
)
and
hasattr
(
m
,
'conv2_offset'
):
constant_init
(
m
.
conv2_offset
,
0
)
if
self
.
zero_init_residual
:
if
self
.
zero_init_residual
:
for
m
in
self
.
modules
():
for
m
in
self
.
modules
():
if
isinstance
(
m
,
Bottleneck
):
if
isinstance
(
m
,
Bottleneck
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment