Unverified Commit b6712d4a authored by Kai Chen's avatar Kai Chen Committed by GitHub
Browse files

Fix the order of import statements in __init__.py (#1094)

* fix the imports in __init__.py

* update contribution guide
parent d2483e15
......@@ -11,5 +11,5 @@ python:
script:
- flake8
- isort -rc --diff mmdet/ tools/
- isort -rc --check-only --diff mmdet/ tools/
- yapf -r -d --style .style.yapf mmdet/ tools/
\ No newline at end of file
......@@ -21,8 +21,13 @@ please contact Kai Chen (chenkaidev[at]gmail[dot]com). We will much appreciate y
### Python
We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code style.
We use [flake8](http://flake8.pycqa.org/en/latest/) as the linter and [yapf](https://github.com/google/yapf) as the formatter.
Please upgrade to the latest yapf (>=0.27.0) and refer to the [configuration](.style.yapf).
We use the following tools for linting and formatting:
- [flake8](http://flake8.pycqa.org/en/latest/): linter
- [yapf](https://github.com/google/yapf): formatter
- [isort](https://github.com/timothycrosley/isort): sort imports
Style configurations of yapf and isort can be found in [.style.yapf](.style.yapf) and [.isort.cfg](.isort.cfg).
>Before you create a PR, make sure that your code lints and is formatted by yapf.
......
from .env import init_dist, get_root_logger, set_random_seed
from .env import get_root_logger, init_dist, set_random_seed
from .inference import inference_detector, init_detector, show_result
from .train import train_detector
from .inference import init_detector, inference_detector, show_result
__all__ = [
'init_dist', 'get_root_logger', 'set_random_seed', 'train_detector',
......
from .anchor_generator import AnchorGenerator
from .anchor_target import anchor_target, anchor_inside_flags
from .anchor_target import anchor_inside_flags, anchor_target
from .guided_anchor_target import ga_loc_target, ga_shape_target
__all__ = [
......
from .assign_sampling import assign_and_sample, build_assigner, build_sampler
from .assigners import AssignResult, BaseAssigner, MaxIoUAssigner
from .bbox_target import bbox_target
from .geometry import bbox_overlaps
from .assigners import BaseAssigner, MaxIoUAssigner, AssignResult
from .samplers import (BaseSampler, PseudoSampler, RandomSampler,
from .samplers import (BaseSampler, CombinedSampler,
InstanceBalancedPosSampler, IoUBalancedNegSampler,
CombinedSampler, SamplingResult)
from .assign_sampling import build_assigner, build_sampler, assign_and_sample
from .transforms import (bbox2delta, delta2bbox, bbox_flip, bbox_mapping,
bbox_mapping_back, bbox2roi, roi2bbox, bbox2result,
distance2bbox)
from .bbox_target import bbox_target
PseudoSampler, RandomSampler, SamplingResult)
from .transforms import (bbox2delta, bbox2result, bbox2roi, bbox_flip,
bbox_mapping, bbox_mapping_back, delta2bbox,
distance2bbox, roi2bbox)
__all__ = [
'bbox_overlaps', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult',
......
from .base_assigner import BaseAssigner
from .max_iou_assigner import MaxIoUAssigner
from .approx_max_iou_assigner import ApproxMaxIoUAssigner
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
from .max_iou_assigner import MaxIoUAssigner
__all__ = [
'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult'
......
from .base_sampler import BaseSampler
from .pseudo_sampler import PseudoSampler
from .random_sampler import RandomSampler
from .combined_sampler import CombinedSampler
from .instance_balanced_pos_sampler import InstanceBalancedPosSampler
from .iou_balanced_neg_sampler import IoUBalancedNegSampler
from .combined_sampler import CombinedSampler
from .ohem_sampler import OHEMSampler
from .pseudo_sampler import PseudoSampler
from .random_sampler import RandomSampler
from .sampling_result import SamplingResult
__all__ = [
......
from .class_names import (voc_classes, imagenet_det_classes,
imagenet_vid_classes, coco_classes, dataset_aliases,
get_classes)
from .class_names import (coco_classes, dataset_aliases, get_classes,
imagenet_det_classes, imagenet_vid_classes,
voc_classes)
from .coco_utils import coco_eval, fast_eval_recall, results2json
from .eval_hooks import (DistEvalHook, DistEvalmAPHook, CocoDistEvalRecallHook,
CocoDistEvalmAPHook)
from .eval_hooks import (CocoDistEvalmAPHook, CocoDistEvalRecallHook,
DistEvalHook, DistEvalmAPHook)
from .mean_ap import average_precision, eval_map, print_map_summary
from .recall import (eval_recalls, print_recall_summary, plot_num_recall,
plot_iou_recall)
from .recall import (eval_recalls, plot_iou_recall, plot_num_recall,
print_recall_summary)
__all__ = [
'voc_classes', 'imagenet_det_classes', 'imagenet_vid_classes',
......
from .utils import split_combined_polys
from .mask_target import mask_target
from .utils import split_combined_polys
__all__ = ['split_combined_polys', 'mask_target']
from .bbox_nms import multiclass_nms
from .merge_augs import (merge_aug_proposals, merge_aug_bboxes,
merge_aug_scores, merge_aug_masks)
from .merge_augs import (merge_aug_bboxes, merge_aug_masks,
merge_aug_proposals, merge_aug_scores)
__all__ = [
'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes',
......
from .dist_utils import allreduce_grads, DistOptimizerHook
from .misc import tensor2imgs, unmap, multi_apply
from .dist_utils import DistOptimizerHook, allreduce_grads
from .misc import multi_apply, tensor2imgs, unmap
__all__ = [
'allreduce_grads', 'DistOptimizerHook', 'tensor2imgs', 'unmap',
......
from .custom import CustomDataset
from .xml_style import XMLDataset
from .coco import CocoDataset
from .builder import build_dataset
from .cityscapes import CityscapesDataset
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .loader import GroupSampler, DistributedGroupSampler, build_dataloader
from .utils import to_tensor, random_scale, show_ann
from .coco import CocoDataset
from .custom import CustomDataset
from .dataset_wrappers import ConcatDataset, RepeatDataset
from .extra_aug import ExtraAugmentation
from .loader import DistributedGroupSampler, GroupSampler, build_dataloader
from .registry import DATASETS
from .builder import build_dataset
from .utils import random_scale, show_ann, to_tensor
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .xml_style import XMLDataset
__all__ = [
'CustomDataset', 'XMLDataset', 'CocoDataset', 'VOCDataset',
......
from .build_loader import build_dataloader
from .sampler import GroupSampler, DistributedGroupSampler
from .sampler import DistributedGroupSampler, GroupSampler
__all__ = ['GroupSampler', 'DistributedGroupSampler', 'build_dataloader']
from .anchor_heads import * # noqa: F401,F403
from .backbones import * # noqa: F401,F403
from .bbox_heads import * # noqa: F401,F403
from .builder import (build_backbone, build_detector, build_head, build_loss,
build_neck, build_roi_extractor, build_shared_head)
from .detectors import * # noqa: F401,F403
from .losses import * # noqa: F401,F403
from .mask_heads import * # noqa: F401,F403
from .necks import * # noqa: F401,F403
from .registry import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS,
ROI_EXTRACTORS, SHARED_HEADS)
from .roi_extractors import * # noqa: F401,F403
from .anchor_heads import * # noqa: F401,F403
from .shared_heads import * # noqa: F401,F403
from .bbox_heads import * # noqa: F401,F403
from .mask_heads import * # noqa: F401,F403
from .losses import * # noqa: F401,F403
from .detectors import * # noqa: F401,F403
from .registry import (BACKBONES, NECKS, ROI_EXTRACTORS, SHARED_HEADS, HEADS,
LOSSES, DETECTORS)
from .builder import (build_backbone, build_neck, build_roi_extractor,
build_shared_head, build_head, build_loss,
build_detector)
__all__ = [
'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES',
......
from .anchor_head import AnchorHead
from .guided_anchor_head import GuidedAnchorHead, FeatureAdaption
from .fcos_head import FCOSHead
from .rpn_head import RPNHead
from .ga_retina_head import GARetinaHead
from .ga_rpn_head import GARPNHead
from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead
from .retina_head import RetinaHead
from .ga_retina_head import GARetinaHead
from .rpn_head import RPNHead
from .ssd_head import SSDHead
__all__ = [
......
from .hrnet import HRNet
from .resnet import ResNet, make_res_layer
from .resnext import ResNeXt
from .ssd_vgg import SSDVGG
from .hrnet import HRNet
__all__ = ['ResNet', 'make_res_layer', 'ResNeXt', 'SSDVGG', 'HRNet']
import torch.nn as nn
from mmcv.cnn.weight_init import normal_init, xavier_init
from .bbox_head import BBoxHead
from ..backbones.resnet import Bottleneck
from ..registry import HEADS
from ..utils import ConvModule
from .bbox_head import BBoxHead
class BasicResBlock(nn.Module):
......
from .base import BaseDetector
from .single_stage import SingleStageDetector
from .two_stage import TwoStageDetector
from .rpn import RPN
from .fast_rcnn import FastRCNN
from .faster_rcnn import FasterRCNN
from .mask_rcnn import MaskRCNN
from .cascade_rcnn import CascadeRCNN
from .double_head_rcnn import DoubleHeadRCNN
from .htc import HybridTaskCascade
from .retinanet import RetinaNet
from .fast_rcnn import FastRCNN
from .faster_rcnn import FasterRCNN
from .fcos import FCOS
from .grid_rcnn import GridRCNN
from .htc import HybridTaskCascade
from .mask_rcnn import MaskRCNN
from .mask_scoring_rcnn import MaskScoringRCNN
from .retinanet import RetinaNet
from .rpn import RPN
from .single_stage import SingleStageDetector
from .two_stage import TwoStageDetector
__all__ = [
'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN',
......
import torch
from .two_stage import TwoStageDetector
from ..registry import DETECTORS
from mmdet.core import bbox2roi, build_assigner, build_sampler
from ..registry import DETECTORS
from .two_stage import TwoStageDetector
@DETECTORS.register_module
......
from .accuracy import accuracy, Accuracy
from .cross_entropy_loss import (cross_entropy, binary_cross_entropy,
mask_cross_entropy, CrossEntropyLoss)
from .focal_loss import sigmoid_focal_loss, FocalLoss
from .smooth_l1_loss import smooth_l1_loss, SmoothL1Loss
from .accuracy import Accuracy, accuracy
from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss
from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy,
cross_entropy, mask_cross_entropy)
from .focal_loss import FocalLoss, sigmoid_focal_loss
from .ghm_loss import GHMC, GHMR
from .balanced_l1_loss import balanced_l1_loss, BalancedL1Loss
from .mse_loss import mse_loss, MSELoss
from .iou_loss import iou_loss, bounded_iou_loss, IoULoss, BoundedIoULoss
from .iou_loss import BoundedIoULoss, IoULoss, bounded_iou_loss, iou_loss
from .mse_loss import MSELoss, mse_loss
from .smooth_l1_loss import SmoothL1Loss, smooth_l1_loss
from .utils import reduce_loss, weight_reduce_loss, weighted_loss
__all__ = [
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment