Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
9e15a014
Unverified
Commit
9e15a014
authored
Feb 07, 2020
by
Jiaqi Wang
Committed by
GitHub
Feb 07, 2020
Browse files
add reppoints config and model without gn (#2058)
* add reppoints without gn * fix
parent
93bed07b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
157 additions
and
19 deletions
+157
-19
configs/reppoints/README.md
configs/reppoints/README.md
+20
-19
configs/reppoints/reppoints_moment_r50_no_gn_fpn_1x.py
configs/reppoints/reppoints_moment_r50_no_gn_fpn_1x.py
+137
-0
No files found.
configs/reppoints/README.md
View file @
9e15a014
...
...
@@ -32,25 +32,26 @@ Another feature of this repo is the demonstration of an `anchor-free detector`,
The results on COCO 2017val are shown in the table below.
| Method | Backbone | Anchor | convert func | Lr schd | box AP | Download |
| :----: | :------: | :-------: | :------: | :-----: | :----: | :------: |
| BBox | R-50-FPN | single | - | 1x | 36.3|
[
model
](
https://drive.google.com/open?id=1TaVAFGZP2i7RwtlQjy3LBH1WI-YRH774
)
|
| BBox | R-50-FPN | none | - | 1x | 37.3|
[
model
](
https://drive.google.com/open?id=1hpfu-I7gtZnIb0NU2WvUvaZz_dm-THuZ
)
|
| RepPoints | R-50-FPN | none | partial MinMax | 1x | 38.1|
[
model
](
https://drive.google.com/open?id=11zFtdKH-QGz_zH7vlcIih6FQAjV84CWc
)
|
| RepPoints | R-50-FPN | none | MinMax | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1Cg9818dpkL-9qjmYdkhrY_BRiQFjV4xu
)
|
| RepPoints | R-50-FPN | none | moment | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1rQg-lE-5nuqO1bt6okeYkti4Q-EaBsu_
)
|
| RepPoints | R-50-FPN | none | moment | 2x | 38.6|
[
model
](
https://drive.google.com/open?id=1TfR-5geVviKhRoXL9JP6cG3fkN2itbBU
)
|
| RepPoints | R-50-FPN | none | moment | 2x (ms train) | 40.8|
[
model
](
https://drive.google.com/open?id=1oaHTIaP51oB5HJ6GWV3WYK19lMm9iJO6
)
|
| RepPoints | R-50-FPN | none | moment | 2x (ms train&ms test) | 42.2| |
| RepPoints | R-101-FPN | none | moment | 2x | 40.3|
[
model
](
https://drive.google.com/open?id=1BAmGeUQ_zVQi2u7rgOuPQem2EjXDLgWm
)
|
| RepPoints | R-101-FPN | none | moment | 2x (ms train) | 42.3|
[
model
](
https://drive.google.com/open?id=14Lf0p4fXElXaxFu8stk3hek3bY8tNENX
)
|
| RepPoints | R-101-FPN | none | moment | 2x (ms train&ms test) | 44.1| |
| RepPoints | R-101-FPN-DCN | none | moment | 2x | 43.0|
[
model
](
https://drive.google.com/open?id=1hpptxpb4QtNuB-HnV5wHbDltPHhlYq4z
)
|
| RepPoints | R-101-FPN-DCN | none | moment | 2x (ms train) | 44.8|
[
model
](
https://drive.google.com/open?id=1fsTckK99HYjOURwcFeHfy5JRRtsCajfX
)
|
| RepPoints | R-101-FPN-DCN | none | moment | 2x (ms train&ms test) | 46.4| |
| RepPoints | X-101-FPN-DCN | none | moment | 2x | 44.5|
[
model
](
https://drive.google.com/open?id=1Y8vqaqU88-FEqqwl6Zb9exD5O246yrMR
)
|
| RepPoints | X-101-FPN-DCN | none | moment | 2x (ms train) | 45.6|
[
model
](
https://drive.google.com/open?id=1nr9gcVWxzeakbfPC6ON9yvKOuLzj_RrJ
)
|
| RepPoints | X-101-FPN-DCN | none | moment | 2x (ms train&ms test) | 46.8| |
| Method | Backbone | GN | Anchor | convert func | Lr schd | box AP | Download |
| :----: | :------: | :-------: | :-------: | :------: | :-----: | :----: | :------: |
| BBox | R-50-FPN | Y | single | - | 1x | 36.3|
[
model
](
https://drive.google.com/open?id=1TaVAFGZP2i7RwtlQjy3LBH1WI-YRH774
)
|
| BBox | R-50-FPN | Y | none | - | 1x | 37.3|
[
model
](
https://drive.google.com/open?id=1hpfu-I7gtZnIb0NU2WvUvaZz_dm-THuZ
)
|
| RepPoints | R-50-FPN | Y | none | partial MinMax | 1x | 38.1|
[
model
](
https://drive.google.com/open?id=11zFtdKH-QGz_zH7vlcIih6FQAjV84CWc
)
|
| RepPoints | R-50-FPN | Y | none | MinMax | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1Cg9818dpkL-9qjmYdkhrY_BRiQFjV4xu
)
|
| RepPoints | R-50-FPN | Y | none | moment | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1rQg-lE-5nuqO1bt6okeYkti4Q-EaBsu_
)
|
| RepPoints | R-50-FPN | N | none | moment | 1x | 36.8|
[
model
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/reppoints/reppoints_moment_r50_no_gn_fpn_1x-66db098e.pth
)
|
| RepPoints | R-50-FPN | Y | none | moment | 2x | 38.6|
[
model
](
https://drive.google.com/open?id=1TfR-5geVviKhRoXL9JP6cG3fkN2itbBU
)
|
| RepPoints | R-50-FPN | Y | none | moment | 2x (ms train) | 40.8|
[
model
](
https://drive.google.com/open?id=1oaHTIaP51oB5HJ6GWV3WYK19lMm9iJO6
)
|
| RepPoints | R-50-FPN | Y | none | moment | 2x (ms train&ms test) | 42.2| |
| RepPoints | R-101-FPN | Y | none | moment | 2x | 40.3|
[
model
](
https://drive.google.com/open?id=1BAmGeUQ_zVQi2u7rgOuPQem2EjXDLgWm
)
|
| RepPoints | R-101-FPN | Y | none | moment | 2x (ms train) | 42.3|
[
model
](
https://drive.google.com/open?id=14Lf0p4fXElXaxFu8stk3hek3bY8tNENX
)
|
| RepPoints | R-101-FPN | Y | none | moment | 2x (ms train&ms test) | 44.1| |
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x | 43.0|
[
model
](
https://drive.google.com/open?id=1hpptxpb4QtNuB-HnV5wHbDltPHhlYq4z
)
|
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x (ms train) | 44.8|
[
model
](
https://drive.google.com/open?id=1fsTckK99HYjOURwcFeHfy5JRRtsCajfX
)
|
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x (ms train&ms test) | 46.4| |
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x | 44.5|
[
model
](
https://drive.google.com/open?id=1Y8vqaqU88-FEqqwl6Zb9exD5O246yrMR
)
|
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x (ms train) | 45.6|
[
model
](
https://drive.google.com/open?id=1nr9gcVWxzeakbfPC6ON9yvKOuLzj_RrJ
)
|
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x (ms train&ms test) | 46.8| |
**Notes:**
...
...
configs/reppoints/reppoints_moment_r50_no_gn_fpn_1x.py
0 → 100644
View file @
9e15a014
# model settings
model
=
dict
(
type
=
'RepPointsDetector'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
True
,
num_outs
=
5
),
bbox_head
=
dict
(
type
=
'RepPointsHead'
,
num_classes
=
81
,
in_channels
=
256
,
feat_channels
=
256
,
point_feat_channels
=
256
,
stacked_convs
=
3
,
num_points
=
9
,
gradient_mul
=
0.1
,
point_strides
=
[
8
,
16
,
32
,
64
,
128
],
point_base_scale
=
4
,
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox_init
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
0.11
,
loss_weight
=
0.5
),
loss_bbox_refine
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
0.11
,
loss_weight
=
1.0
),
transform_method
=
'moment'
))
# training and testing settings
train_cfg
=
dict
(
init
=
dict
(
assigner
=
dict
(
type
=
'PointAssigner'
,
scale
=
4
,
pos_num
=
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
refine
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/reppoints_moment_r50_no_gn_fpn_1x'
load_from
=
None
resume_from
=
None
auto_resume
=
True
workflow
=
[(
'train'
,
1
)]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment