Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
830effcd
Commit
830effcd
authored
Oct 03, 2018
by
Kai Chen
Browse files
add default result visualization for base detector
parent
65c3ebca
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
40 additions
and
1 deletion
+40
-1
mmdet/core/eval/class_names.py
mmdet/core/eval/class_names.py
+1
-1
mmdet/models/detectors/base.py
mmdet/models/detectors/base.py
+39
-0
No files found.
mmdet/core/eval/class_names.py
View file @
830effcd
...
...
@@ -95,7 +95,7 @@ def get_classes(dataset):
if
mmcv
.
is_str
(
dataset
):
if
dataset
in
alias2name
:
labels
=
eval
(
alias2name
[
dataset
]
+
'_la
bel
s()'
)
labels
=
eval
(
alias2name
[
dataset
]
+
'_
c
la
sse
s()'
)
else
:
raise
ValueError
(
'Unrecognized dataset: {}'
.
format
(
dataset
))
else
:
...
...
mmdet/models/detectors/base.py
View file @
830effcd
import
logging
from
abc
import
ABCMeta
,
abstractmethod
import
mmcv
import
numpy
as
np
import
torch
import
torch.nn
as
nn
from
mmdet.core
import
tensor2imgs
,
get_classes
class
BaseDetector
(
nn
.
Module
):
"""Base class for detectors"""
...
...
@@ -66,3 +70,38 @@ class BaseDetector(nn.Module):
return
self
.
forward_train
(
img
,
img_meta
,
**
kwargs
)
else
:
return
self
.
forward_test
(
img
,
img_meta
,
**
kwargs
)
def
show_result
(
self
,
data
,
result
,
img_norm_cfg
,
dataset
=
'coco'
,
score_thr
=
0.3
):
img_tensor
=
data
[
'img'
][
0
]
img_metas
=
data
[
'img_meta'
][
0
].
data
[
0
]
imgs
=
tensor2imgs
(
img_tensor
,
**
img_norm_cfg
)
assert
len
(
imgs
)
==
len
(
img_metas
)
if
isinstance
(
dataset
,
str
):
class_names
=
get_classes
(
dataset
)
elif
isinstance
(
dataset
,
list
):
class_names
=
dataset
else
:
raise
TypeError
(
'dataset must be a valid dataset name or a list'
' of class names, not {}'
.
format
(
type
(
dataset
)))
for
img
,
img_meta
in
zip
(
imgs
,
img_metas
):
h
,
w
,
_
=
img_meta
[
'img_shape'
]
img_show
=
img
[:
h
,
:
w
,
:]
labels
=
[
np
.
full
(
bbox
.
shape
[
0
],
i
,
dtype
=
np
.
int32
)
for
i
,
bbox
in
enumerate
(
result
)
]
labels
=
np
.
concatenate
(
labels
)
bboxes
=
np
.
vstack
(
result
)
mmcv
.
imshow_det_bboxes
(
img_show
,
bboxes
,
labels
,
class_names
=
class_names
,
score_thr
=
score_thr
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment