Unverified Commit 710b8e22 authored by Kai Chen's avatar Kai Chen Committed by GitHub
Browse files

Use different configs for proposal train/test (#587)

* use different configs for proposal train/test

* update configs for dcn

* update inf speed

* update inf speed in dcn, gn, htc

* update comparision

* keep backward compatibility
parent 14fc9f0f
......@@ -54,31 +54,31 @@ More models with different backbones will be added to the model zoo.
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe | 1x | 3.6 | 0.333 | 12.9 | 36.7 | - |
| R-50-FPN | pytorch | 1x | 3.8 | 0.353 | 12.5 | 36.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth) |
| R-50-FPN | caffe | 1x | 3.6 | 0.333 | 13.5 | 36.6 | - |
| R-50-FPN | pytorch | 1x | 3.8 | 0.353 | 13.6 | 36.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth) |
| R-50-FPN | pytorch | 2x | - | - | - | 37.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth) |
| R-101-FPN | caffe | 1x | 5.5 | 0.465 | 10.7 | 38.8 | - |
| R-101-FPN | pytorch | 1x | 5.7 | 0.474 | 10.8 | 38.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth) |
| R-101-FPN | caffe | 1x | 5.5 | 0.465 | 11.5 | 38.8 | - |
| R-101-FPN | pytorch | 1x | 5.7 | 0.474 | 11.9 | 38.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth) |
| R-101-FPN | pytorch | 2x | - | - | - | 39.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 6.9 | 0.672 | 9.3 | 40.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth)
| X-101-32x4d-FPN | pytorch | 2x| - | - | - | 40.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth)
| X-101-64x4d-FPN | pytorch | 1x| 9.8 | 1.040 | 7.1 | 41.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth)
| X-101-32x4d-FPN | pytorch | 1x| 6.9 | 0.672 | 10.3 | 40.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth)
| X-101-32x4d-FPN | pytorch | 2x| - | - | - | 40.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth)
| X-101-64x4d-FPN | pytorch | 1x| 9.8 | 1.040 | 7.3 | 41.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth)
| X-101-64x4d-FPN | pytorch | 2x| - | - | - | 40.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth)
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | 1x | 3.8 | 0.430 | 9.9 | 37.5 | 34.4 | - |
| R-50-FPN | pytorch | 1x | 3.9 | 0.453 | 9.6 | 37.3 | 34.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth) |
| R-50-FPN | pytorch | 2x | - | - | - | 38.6 | 35.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth) |
| R-101-FPN | caffe | 1x | 5.7 | 0.534 | 8.8 | 39.9 | 36.1 | - |
| R-101-FPN | pytorch | 1x | 5.8 | 0.571 | 8.9 | 39.4 | 35.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth) |
| R-101-FPN | pytorch | 2x | - | - | - | 40.4 | 36.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 7.1 | 0.759 | 7.9 | 41.2 | 37.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth)
| R-50-FPN | caffe | 1x | 3.8 | 0.430 | 10.2 | 37.4 | 34.3 | - |
| R-50-FPN | pytorch | 1x | 3.9 | 0.453 | 10.6 | 37.3 | 34.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth) |
| R-50-FPN | pytorch | 2x | - | - | - | 38.5 | 35.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth) |
| R-101-FPN | caffe | 1x | 5.7 | 0.534 | 9.4 | 39.9 | 36.1 | - |
| R-101-FPN | pytorch | 1x | 5.8 | 0.571 | 9.5 | 39.4 | 35.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth) |
| R-101-FPN | pytorch | 2x | - | - | - | 40.3 | 36.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 7.1 | 0.759 | 8.3 | 41.1 | 37.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth)
| X-101-32x4d-FPN | pytorch | 2x| - | - | - | 41.4 | 37.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth)
| X-101-64x4d-FPN | pytorch | 1x| 10.0 | 1.102 | 5.8 | 42.2 | 38.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth)
| X-101-64x4d-FPN | pytorch | 2x| - | - | - | 42.0 | 37.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth)
| X-101-64x4d-FPN | pytorch | 1x| 10.0 | 1.102 | 6.5 | 42.1 | 38.0 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth)
| X-101-64x4d-FPN | pytorch | 2x| - | - | - | 42.0 | 37.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth)
### Fast R-CNN (with pre-computed proposals)
......@@ -116,31 +116,31 @@ More models with different backbones will be added to the model zoo.
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe | 1x | 3.9 | 0.464 | 9.7 | 40.6 | - |
| R-50-FPN | pytorch | 1x | 4.1 | 0.455 | 10.1 | 40.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20190501-3b6211ab.pth) |
| R-50-FPN | caffe | 1x | 3.9 | 0.464 | 10.9 | 40.5 | - |
| R-50-FPN | pytorch | 1x | 4.1 | 0.455 | 11.9 | 40.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20190501-3b6211ab.pth) |
| R-50-FPN | pytorch | 20e | - | - | - | 41.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth) |
| R-101-FPN | caffe | 1x | 5.8 | 0.569 | 8.7 | 42.5 | - |
| R-101-FPN | pytorch | 1x | 6.0 | 0.584 | 8.7 | 42.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth) |
| R-101-FPN | pytorch | 20e | - | - | - | 42.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 7.2 | 0.770 | 7.8 | 43.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_20190501-af628be5.pth)
| X-101-32x4d-FPN | pytorch |20e| - | - | - | 44.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth)
| X-101-64x4d-FPN | pytorch | 1x| 10.0 | 1.133 | 6.1 | 44.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth)
| X-101-64x4d-FPN | pytorch |20e| - | - | - | 44.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth)
| R-101-FPN | caffe | 1x | 5.8 | 0.569 | 9.6 | 42.4 | - |
| R-101-FPN | pytorch | 1x | 6.0 | 0.584 | 10.3 | 42.0 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth) |
| R-101-FPN | pytorch | 20e | - | - | - | 42.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 7.2 | 0.770 | 8.9 | 43.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_20190501-af628be5.pth)
| X-101-32x4d-FPN | pytorch |20e| - | - | - | 44.0 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth)
| X-101-64x4d-FPN | pytorch | 1x| 10.0 | 1.133 | 6.7 | 44.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth)
| X-101-64x4d-FPN | pytorch |20e| - | - | - | 44.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth)
### Cascade Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | 1x | 5.1 | 0.692 | 6.7 | 41.0 | 35.6 | - |
| R-50-FPN | pytorch | 1x | 5.3 | 0.683 | 6.5 | 41.3 | 35.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth) |
| R-50-FPN | pytorch | 20e | - | - | - | 42.4 | 36.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth) |
| R-101-FPN | caffe | 1x | 7.0 | 0.803 | 6.3 | 43.1 | 37.3 | - |
| R-101-FPN | pytorch | 1x | 7.2 | 0.807 | 6.1 | 42.7 | 37.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth) |
| R-101-FPN | pytorch | 20e | - | - | - | 43.4 | 37.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 8.4 | 0.976 | 5.7 | 44.4 | 38.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth)
| X-101-32x4d-FPN | pytorch |20e| - | - | - | 44.9 | 38.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth)
| X-101-64x4d-FPN | pytorch | 1x| 11.4 | 1.33 | 4.7 | 45.3 | 39.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_20190501-827e0a70.pth)
| X-101-64x4d-FPN | pytorch |20e| - | - | - | 45.8 | 39.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth)
| R-50-FPN | caffe | 1x | 5.1 | 0.692 | 7.6 | 40.9 | 35.5 | - |
| R-50-FPN | pytorch | 1x | 5.3 | 0.683 | 7.4 | 41.2 | 35.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth) |
| R-50-FPN | pytorch | 20e | - | - | - | 42.3 | 36.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth) |
| R-101-FPN | caffe | 1x | 7.0 | 0.803 | 7.2 | 43.1 | 37.2 | - |
| R-101-FPN | pytorch | 1x | 7.2 | 0.807 | 6.8 | 42.6 | 37.0 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth) |
| R-101-FPN | pytorch | 20e | - | - | - | 43.3 | 37.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth) |
| X-101-32x4d-FPN | pytorch | 1x| 8.4 | 0.976 | 6.6 | 44.4 | 38.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth)
| X-101-32x4d-FPN | pytorch |20e| - | - | - | 44.7 | 38.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth)
| X-101-64x4d-FPN | pytorch | 1x| 11.4 | 1.33 | 5.3 | 45.4 | 39.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_20190501-827e0a70.pth)
| X-101-64x4d-FPN | pytorch |20e| - | - | - | 45.7 | 39.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth)
**Notes:**
......@@ -150,15 +150,15 @@ More models with different backbones will be added to the model zoo.
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | pytorch | 1x | 7.4 | 0.936 | 3.5 | 42.2 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth) |
| R-50-FPN | pytorch | 20e | - | - | - | 43.2 | 38.0 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth) |
| R-101-FPN | pytorch | 20e | 9.3 | 1.051 | 3.4 | 44.9 | 39.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth) |
| X-101-32x4d-FPN | pytorch |20e| 5.8 | 0.769 | 3.3 | 46.1 | 40.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth) |
| X-101-64x4d-FPN | pytorch |20e| 7.5 | 1.120 | 3.0 | 47.0 | 40.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth) |
| R-50-FPN | pytorch | 1x | 7.4 | 0.936 | 4.1 | 42.1 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth) |
| R-50-FPN | pytorch | 20e | - | - | - | 43.2 | 38.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth) |
| R-101-FPN | pytorch | 20e | 9.3 | 1.051 | 4.0 | 44.9 | 39.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth) |
| X-101-32x4d-FPN | pytorch |20e| 5.8 | 0.769 | 3.8 | 46.1 | 40.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth) |
| X-101-64x4d-FPN | pytorch |20e| 7.5 | 1.120 | 3.5 | 46.9 | 40.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth) |
**Notes:**
- Please refer to [Hybrid Task Cascade](configs/gn/README.md) for details and more a powerful model (50.7/43.9).
- Please refer to [Hybrid Task Cascade](configs/htc/README.md) for details and more a powerful model (50.7/43.9).
### SSD
......@@ -242,7 +242,7 @@ of 2x schedule is higher.
<td>1x</td>
<td>36.7</td>
<td>36.8</td>
<td>36.4 / 36.7</td>
<td>36.4 / 36.6</td>
</tr>
<tr>
<td>2x</td>
......@@ -255,13 +255,13 @@ of 2x schedule is higher.
<td>1x</td>
<td>37.7 &amp; 33.9</td>
<td>37.8 &amp; 34.2</td>
<td>37.3 &amp; 34.2 / 37.5 &amp; 34.4</td>
<td>37.3 &amp; 34.2 / 37.4 &amp; 34.3</td>
</tr>
<tr>
<td>2x</td>
<td>38.6 &amp; 34.5</td>
<td>-</td>
<td>38.6 &amp; 35.1 / -</td>
<td>38.5 &amp; 35.1 / -</td>
</tr>
<tr>
<td rowspan="2">Fast R-CNN</td>
......@@ -360,13 +360,13 @@ The inference speed is measured with fps (img/s) on a single GPU. The higher, th
<td>Faster R-CNN</td>
<td>10.3</td>
<td>7.9</td>
<td>12.9</td>
<td>13.5</td>
</tr>
<tr>
<td>Mask R-CNN</td>
<td>8.5</td>
<td>7.7</td>
<td>9.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Fast R-CNN</td>
......
......@@ -92,6 +92,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -146,9 +153,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -93,6 +93,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=12000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -147,9 +154,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=12000,
nms_post=2000,
max_num=2000,
nms_pre=6000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -92,6 +92,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -146,9 +153,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -94,6 +94,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -148,9 +155,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -94,6 +94,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -148,9 +155,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -81,6 +81,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -132,9 +139,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -86,6 +86,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=12000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -140,9 +147,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=12000,
nms_post=2000,
max_num=2000,
nms_pre=6000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -81,6 +81,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -132,9 +139,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -83,6 +83,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -134,9 +141,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -83,6 +83,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -134,9 +141,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -23,20 +23,21 @@
| Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:------------:|:-------:|:-------------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 3.9 | 0.594 | 10.2 | 40.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-e41688c9.pth) |
| R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.3 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth) |
| R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.9 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth) |
| R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth) |
| R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.2 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth) |
| R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.8 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth) |
| R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth) |
| R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 5.8 | 0.811 | 8.0 | 42.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-a7e31b65.pth) |
| X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.1 | 1.126 | 6.6 | 43.5 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_x101_32x4d_fpn_1x_20190201-6d46376f.pth) |
| X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.1 | 1.126 | 6.6 | 43.4 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_x101_32x4d_fpn_1x_20190201-6d46376f.pth) |
| R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.1 | 37.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-4f94ff79.pth) |
| R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.4 | 37.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth) |
| R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.3 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth) |
| R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 0.939 | 6.5 | 43.2 | 38.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-decb6db5.pth) |
| R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth) |
| R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth) |
| R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.5 | 38.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth) |
| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.8 | 39.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth) |
| R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth) |
| R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth) |
| R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.4 | 38.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth) |
| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.7 | 39.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth) |
**Notes:**
- `dconv` and `mdconv` denote (modulated) deformable convolution, `c3-c5` means adding dconv in resnet stage 3 to 5. `dpool` and `mdpool` denote (modulated) deformable roi pooling.
- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
\ No newline at end of file
- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
- **Memory, Train/Inf time is outdated.**
\ No newline at end of file
......@@ -97,6 +97,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -151,9 +158,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -86,6 +86,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
......@@ -137,9 +144,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -63,6 +63,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
......@@ -81,9 +88,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -66,6 +66,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
......@@ -84,9 +91,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -64,6 +64,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
......@@ -82,9 +89,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -63,6 +63,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
......@@ -81,9 +88,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -64,6 +64,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
......@@ -82,9 +89,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
......@@ -74,6 +74,13 @@ train_cfg = dict(
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
......@@ -93,9 +100,9 @@ train_cfg = dict(
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment