"git@developer.sourcefind.cn:change/sglang.git" did not exist on "475a249bb86a412f4b285d1fe675426f4ddeeacf"
Commit 5b9a200e authored by ThangVu's avatar ThangVu
Browse files

add group norm config and minor fix

parent f9a1c196
# model settings
model = dict(
type='MaskRCNN',
pretrained='tools/resnet50-GN.path',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch',
normalize=dict(
type='GN',
num_groups=32)),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5,
normalize=dict(
type='GN',
num_groups=32)),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='ConvFCBBoxHead',
num_shared_convs=4,
num_shared_fcs=1,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
normalize=dict(
type='GN',
num_groups=32)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=81,
normalize=dict(
type='GN',
num_groups=32)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.5),
max_per_img=100,
mask_thr_binary=0.5))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=True,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=True,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[16, 22])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 24
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/mask_rcnn_r50_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
...@@ -33,7 +33,7 @@ class BasicBlock(nn.Module): ...@@ -33,7 +33,7 @@ class BasicBlock(nn.Module):
downsample=None, downsample=None,
style='pytorch', style='pytorch',
with_cp=False, with_cp=False,
normalize=dict(type='GN')): normalize=dict(type='BN')):
super(BasicBlock, self).__init__() super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride, dilation) self.conv1 = conv3x3(inplanes, planes, stride, dilation)
...@@ -252,16 +252,14 @@ class ResNet(nn.Module): ...@@ -252,16 +252,14 @@ class ResNet(nn.Module):
self.depth = depth self.depth = depth
self.num_stages = num_stages self.num_stages = num_stages
assert num_stages >= 1 and num_stages <= 4 assert num_stages >= 1 and num_stages <= 4
assert len(strides) == len(dilations) == num_stages
assert max(out_indices) < num_stages
self.strides = strides self.strides = strides
self.dilations = dilations self.dilations = dilations
assert len(strides) == len(dilations) == num_stages assert len(strides) == len(dilations) == num_stages
self.out_indices = out_indices self.out_indices = out_indices
assert max(out_indices) < num_stages assert max(out_indices) < num_stages
self.style = style self.style = style
self.with_cp = with_cp
self.frozen_stages = frozen_stages self.frozen_stages = frozen_stages
self.with_cp = with_cp
assert isinstance(normalize, dict) and 'type' in normalize assert isinstance(normalize, dict) and 'type' in normalize
assert normalize['type'] in ['BN', 'GN'] assert normalize['type'] in ['BN', 'GN']
...@@ -357,7 +355,7 @@ class ResNet(nn.Module): ...@@ -357,7 +355,7 @@ class ResNet(nn.Module):
if mode and self.frozen_stages >= 0: if mode and self.frozen_stages >= 0:
for param in self.conv1.parameters(): for param in self.conv1.parameters():
param.requires_grad = False param.requires_grad = False
stem_norm = getattr(self, self.stem_norm_name) stem_norm = getattr(self, self.stem_norm_name)
stem_norm.eval() stem_norm.eval()
for param in stem_norm.parameters(): for param in stem_norm.parameters():
...@@ -447,7 +445,8 @@ class ResNetClassifier(ResNet): ...@@ -447,7 +445,8 @@ class ResNetClassifier(ResNet):
if 'blobs' in cf_state: if 'blobs' in cf_state:
cf_state = cf_state['blobs'] cf_state = cf_state['blobs']
for i, (py_k, cf_k) in enumerate(mapping.items(), 1): for i, (py_k, cf_k) in enumerate(mapping.items(), 1):
print('[{}/{}] Loading {} to {}'.format(i, len(mapping), cf_k, py_k)) print('[{}/{}] Loading {} to {}'.format(
i, len(mapping), cf_k, py_k))
assert py_k in py_state and cf_k in cf_state assert py_k in py_state and cf_k in cf_state
py_state[py_k] = torch.Tensor(cf_state[cf_k]) py_state[py_k] = torch.Tensor(cf_state[cf_k])
self.load_state_dict(py_state) self.load_state_dict(py_state)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment