Commit 453e151f authored by WXinlong's avatar WXinlong
Browse files

add SOLO

parent 695fcddd
import argparse
import os
import os.path as osp
import shutil
import tempfile
from scipy import ndimage
import mmcv
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import init_dist, get_dist_info, load_checkpoint
from mmdet.core import coco_eval, results2json, wrap_fp16_model, tensor2imgs, get_classes
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector
import cv2
import numpy as np
import matplotlib.cm as cm
def vis_seg(data, result, img_norm_cfg, data_id, colors, score_thr, save_dir):
img_tensor = data['img'][0]
img_metas = data['img_meta'][0].data[0]
imgs = tensor2imgs(img_tensor, **img_norm_cfg)
assert len(imgs) == len(img_metas)
class_names = get_classes('coco')
for img, img_meta, cur_result in zip(imgs, img_metas, result):
if cur_result is None:
continue
h, w, _ = img_meta['img_shape']
img_show = img[:h, :w, :]
seg_label = cur_result[0]
seg_label = seg_label.cpu().numpy().astype(np.uint8)
cate_label = cur_result[1]
cate_label = cate_label.cpu().numpy()
score = cur_result[2].cpu().numpy()
vis_inds = score > score_thr
seg_label = seg_label[vis_inds]
num_mask = seg_label.shape[0]
cate_label = cate_label[vis_inds]
cate_score = score[vis_inds]
mask_density = []
for idx in range(num_mask):
cur_mask = seg_label[idx, :, :]
cur_mask = mmcv.imresize(cur_mask, (w, h))
cur_mask = (cur_mask > 0.5).astype(np.int32)
mask_density.append(cur_mask.sum())
orders = np.argsort(mask_density)
seg_label = seg_label[orders]
cate_label = cate_label[orders]
cate_score = cate_score[orders]
seg_show = img_show.copy()
for idx in range(num_mask):
idx = -(idx+1)
cur_mask = seg_label[idx, :,:]
cur_mask = mmcv.imresize(cur_mask, (w, h))
cur_mask = (cur_mask > 0.5).astype(np.uint8)
if cur_mask.sum() == 0:
continue
color_mask = np.random.randint(
0, 256, (1, 3), dtype=np.uint8)
cur_mask_bool = cur_mask.astype(np.bool)
seg_show[cur_mask_bool] = img_show[cur_mask_bool] * 0.5 + color_mask * 0.5
for idx in range(num_mask):
idx = -(idx+1)
cur_mask = seg_label[idx, :, :]
cur_mask = mmcv.imresize(cur_mask, (w, h))
cur_mask = (cur_mask > 0.5).astype(np.uint8)
if cur_mask.sum() == 0:
continue
cur_cate = cate_label[idx]
cur_score = cate_score[idx]
label_text = class_names[cur_cate]
#label_text += '|{:.02f}'.format(cur_score)
# center
center_y, center_x = ndimage.measurements.center_of_mass(cur_mask)
vis_pos = (max(int(center_x) - 10, 0), int(center_y))
cv2.putText(seg_show, label_text, vis_pos,
cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255)) # green
mmcv.imwrite(seg_show, '{}/{}.jpg'.format(save_dir, data_id))
def single_gpu_test(model, data_loader, args, cfg=None, verbose=True):
model.eval()
results = []
dataset = data_loader.dataset
class_num = 1000 # ins
colors = [(np.random.random((1, 3)) * 255).tolist()[0] for i in range(class_num)]
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
seg_result = model(return_loss=False, rescale=True, **data)
result = None
results.append(result)
if verbose:
vis_seg(data, seg_result, cfg.img_norm_cfg, data_id=i, colors=colors, score_thr=args.score_thr, save_dir=args.save_dir)
batch_size = data['img'][0].size(0)
for _ in range(batch_size):
prog_bar.update()
return results
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
results.append(result)
if rank == 0:
batch_size = data['img'][0].size(0)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results = collect_results(results, len(dataset), tmpdir)
return results
def collect_results(result_part, size, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ),
32,
dtype=torch.uint8,
device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
dist.barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
part_list.append(mmcv.load(part_file))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results
def parse_args():
parser = argparse.ArgumentParser(description='MMDet test detector')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--json_out',
help='output result file name without extension',
type=str)
parser.add_argument(
'--eval',
type=str,
nargs='+',
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
help='eval types')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument('--score_thr', type=float, default=0.3, help='score threshold for visualization')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument('--save_dir', help='dir for saveing visualized images')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
assert args.out or args.show or args.json_out, \
('Please specify at least one operation (save or show the results) '
'with the argument "--out" or "--show" or "--json_out"')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
if args.json_out is not None and args.json_out.endswith('.json'):
args.json_out = args.json_out[:-5]
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
assert not distributed
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args, cfg=cfg)
else:
model = MMDistributedDataParallel(model.cuda())
outputs = multi_gpu_test(model, data_loader, args.tmpdir)
rank, _ = get_dist_info()
if args.out and rank == 0:
print('\nwriting results to {}'.format(args.out))
mmcv.dump(outputs, args.out)
eval_types = args.eval
if eval_types:
print('Starting evaluate {}'.format(' and '.join(eval_types)))
if eval_types == ['proposal_fast']:
result_file = args.out
coco_eval(result_file, eval_types, dataset.coco)
else:
if not isinstance(outputs[0], dict):
result_files = results2json(dataset, outputs, args.out)
coco_eval(result_files, eval_types, dataset.coco)
else:
for name in outputs[0]:
print('\nEvaluating {}'.format(name))
outputs_ = [out[name] for out in outputs]
result_file = args.out + '.{}'.format(name)
result_files = results2json(dataset, outputs_,
result_file)
coco_eval(result_files, eval_types, dataset.coco)
# Save predictions in the COCO json format
if args.json_out and rank == 0:
if not isinstance(outputs[0], dict):
results2json(dataset, outputs, args.json_out)
else:
for name in outputs[0]:
outputs_ = [out[name] for out in outputs]
result_file = args.json_out + '.{}'.format(name)
results2json(dataset, outputs_, result_file)
if __name__ == '__main__':
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment