Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
364698b6
Commit
364698b6
authored
Dec 14, 2019
by
Cao Yuhang
Committed by
Kai Chen
Dec 14, 2019
Browse files
Remove keep all stage code in HTC and Cascade RCNN (#1806)
* Remove keep all stage code * remove keep_all_stage in config
parent
4357697a
Changes
24
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
8 additions
and
94 deletions
+8
-94
configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py
configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py
+1
-2
configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py
configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py
+1
-2
mmdet/models/detectors/cascade_rcnn.py
mmdet/models/detectors/cascade_rcnn.py
+3
-48
mmdet/models/detectors/htc.py
mmdet/models/detectors/htc.py
+3
-42
No files found.
configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py
View file @
364698b6
...
...
@@ -193,8 +193,7 @@ test_cfg = dict(
score_thr
=
0.001
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
),
keep_all_stages
=
False
)
mask_thr_binary
=
0.5
))
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
...
...
configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py
View file @
364698b6
...
...
@@ -193,8 +193,7 @@ test_cfg = dict(
score_thr
=
0.001
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
),
keep_all_stages
=
False
)
mask_thr_binary
=
0.5
))
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
...
...
mmdet/models/detectors/cascade_rcnn.py
View file @
364698b6
...
...
@@ -339,41 +339,6 @@ class CascadeRCNN(BaseDetector, RPNTestMixin):
cls_score
,
bbox_pred
=
bbox_head
(
bbox_feats
)
ms_scores
.
append
(
cls_score
)
if
self
.
test_cfg
.
keep_all_stages
:
det_bboxes
,
det_labels
=
bbox_head
.
get_det_bboxes
(
rois
,
cls_score
,
bbox_pred
,
img_shape
,
scale_factor
,
rescale
=
rescale
,
cfg
=
rcnn_test_cfg
)
bbox_result
=
bbox2result
(
det_bboxes
,
det_labels
,
bbox_head
.
num_classes
)
ms_bbox_result
[
'stage{}'
.
format
(
i
)]
=
bbox_result
if
self
.
with_mask
:
mask_roi_extractor
=
self
.
mask_roi_extractor
[
i
]
mask_head
=
self
.
mask_head
[
i
]
if
det_bboxes
.
shape
[
0
]
==
0
:
mask_classes
=
mask_head
.
num_classes
-
1
segm_result
=
[[]
for
_
in
range
(
mask_classes
)]
else
:
_bboxes
=
(
det_bboxes
[:,
:
4
]
*
scale_factor
if
rescale
else
det_bboxes
)
mask_rois
=
bbox2roi
([
_bboxes
])
mask_feats
=
mask_roi_extractor
(
x
[:
len
(
mask_roi_extractor
.
featmap_strides
)],
mask_rois
)
if
self
.
with_shared_head
:
mask_feats
=
self
.
shared_head
(
mask_feats
,
i
)
mask_pred
=
mask_head
(
mask_feats
)
segm_result
=
mask_head
.
get_seg_masks
(
mask_pred
,
_bboxes
,
det_labels
,
rcnn_test_cfg
,
ori_shape
,
scale_factor
,
rescale
)
ms_segm_result
[
'stage{}'
.
format
(
i
)]
=
segm_result
if
i
<
self
.
num_stages
-
1
:
bbox_label
=
cls_score
.
argmax
(
dim
=
1
)
rois
=
bbox_head
.
regress_by_class
(
rois
,
bbox_label
,
bbox_pred
,
...
...
@@ -425,20 +390,10 @@ class CascadeRCNN(BaseDetector, RPNTestMixin):
ori_shape
,
scale_factor
,
rescale
)
ms_segm_result
[
'ensemble'
]
=
segm_result
if
not
self
.
test_cfg
.
keep_all_stages
:
if
self
.
with_mask
:
results
=
(
ms_bbox_result
[
'ensemble'
],
ms_segm_result
[
'ensemble'
])
else
:
results
=
ms_bbox_result
[
'ensemble'
]
if
self
.
with_mask
:
results
=
(
ms_bbox_result
[
'ensemble'
],
ms_segm_result
[
'ensemble'
])
else
:
if
self
.
with_mask
:
results
=
{
stage
:
(
ms_bbox_result
[
stage
],
ms_segm_result
[
stage
])
for
stage
in
ms_bbox_result
}
else
:
results
=
ms_bbox_result
results
=
ms_bbox_result
[
'ensemble'
]
return
results
...
...
mmdet/models/detectors/htc.py
View file @
364698b6
...
...
@@ -334,35 +334,6 @@ class HybridTaskCascade(CascadeRCNN):
i
,
x
,
rois
,
semantic_feat
=
semantic_feat
)
ms_scores
.
append
(
cls_score
)
if
self
.
test_cfg
.
keep_all_stages
:
det_bboxes
,
det_labels
=
bbox_head
.
get_det_bboxes
(
rois
,
cls_score
,
bbox_pred
,
img_shape
,
scale_factor
,
rescale
=
rescale
,
cfg
=
rcnn_test_cfg
)
bbox_result
=
bbox2result
(
det_bboxes
,
det_labels
,
bbox_head
.
num_classes
)
ms_bbox_result
[
'stage{}'
.
format
(
i
)]
=
bbox_result
if
self
.
with_mask
:
mask_head
=
self
.
mask_head
[
i
]
if
det_bboxes
.
shape
[
0
]
==
0
:
mask_classes
=
mask_head
.
num_classes
-
1
segm_result
=
[[]
for
_
in
range
(
mask_classes
)]
else
:
_bboxes
=
(
det_bboxes
[:,
:
4
]
*
scale_factor
if
rescale
else
det_bboxes
)
mask_pred
=
self
.
_mask_forward_test
(
i
,
x
,
_bboxes
,
semantic_feat
=
semantic_feat
)
segm_result
=
mask_head
.
get_seg_masks
(
mask_pred
,
_bboxes
,
det_labels
,
rcnn_test_cfg
,
ori_shape
,
scale_factor
,
rescale
)
ms_segm_result
[
'stage{}'
.
format
(
i
)]
=
segm_result
if
i
<
self
.
num_stages
-
1
:
bbox_label
=
cls_score
.
argmax
(
dim
=
1
)
rois
=
bbox_head
.
regress_by_class
(
rois
,
bbox_label
,
bbox_pred
,
...
...
@@ -415,20 +386,10 @@ class HybridTaskCascade(CascadeRCNN):
ori_shape
,
scale_factor
,
rescale
)
ms_segm_result
[
'ensemble'
]
=
segm_result
if
not
self
.
test_cfg
.
keep_all_stages
:
if
self
.
with_mask
:
results
=
(
ms_bbox_result
[
'ensemble'
],
ms_segm_result
[
'ensemble'
])
else
:
results
=
ms_bbox_result
[
'ensemble'
]
if
self
.
with_mask
:
results
=
(
ms_bbox_result
[
'ensemble'
],
ms_segm_result
[
'ensemble'
])
else
:
if
self
.
with_mask
:
results
=
{
stage
:
(
ms_bbox_result
[
stage
],
ms_segm_result
[
stage
])
for
stage
in
ms_bbox_result
}
else
:
results
=
ms_bbox_result
results
=
ms_bbox_result
[
'ensemble'
]
return
results
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment