formating.py 4.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from collections.abc import Sequence

import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC

from ..registry import PIPELINES


def to_tensor(data):
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.
    """
    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not mmcv.is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError('type {} cannot be converted to tensor.'.format(
            type(data)))


@PIPELINES.register_module
class ToTensor(object):

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            results[key] = to_tensor(results[key])
        return results

    def __repr__(self):
        return self.__class__.__name__ + '(keys={})'.format(self.keys)


@PIPELINES.register_module
class ImageToTensor(object):

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            results[key] = to_tensor(results[key].transpose(2, 0, 1))
        return results

    def __repr__(self):
        return self.__class__.__name__ + '(keys={})'.format(self.keys)


@PIPELINES.register_module
class Transpose(object):

    def __init__(self, keys, order):
        self.keys = keys
        self.order = order

    def __call__(self, results):
        for key in self.keys:
            results[key] = results[key].transpose(self.order)
        return results

    def __repr__(self):
        return self.__class__.__name__ + '(keys={}, order={})'.format(
            self.keys, self.order)


@PIPELINES.register_module
class ToDataContainer(object):

    def __init__(self,
                 fields=(dict(key='img', stack=True), dict(key='gt_bboxes'),
                         dict(key='gt_labels'))):
        self.fields = fields

    def __call__(self, results):
        for field in self.fields:
            field = field.copy()
            key = field.pop('key')
            results[key] = DC(results[key], **field)
        return results

    def __repr__(self):
        return self.__class__.__name__ + '(fields={})'.format(self.fields)


@PIPELINES.register_module
class DefaultFormatBundle(object):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields, including "img",
    "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
    - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor,
                       (3)to DataContainer (stack=True)
    """

    def __call__(self, results):
        if 'img' in results:
            img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
            results['img'] = DC(to_tensor(img), stack=True)
        for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']:
            if key not in results:
                continue
            results[key] = DC(to_tensor(results[key]))
        if 'gt_masks' in results:
            results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
        if 'gt_semantic_seg' in results:
            results['gt_semantic_seg'] = DC(
                to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
        return results

    def __repr__(self):
        return self.__class__.__name__


@PIPELINES.register_module
class Collect(object):

    def __init__(self,
                 keys,
                 meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape',
                            'scale_factor', 'flip', 'img_norm_cfg')):
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
        data = {}
        img_meta = {}
        for key in self.meta_keys:
            img_meta[key] = results[key]
        data['img_meta'] = DC(img_meta, cpu_only=True)
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
        return self.__class__.__name__ + '(keys={}, meta_keys={})'.format(
            self.keys, self.meta_keys)