test_robustness.py 17.1 KB
Newer Older
1
import argparse
2
import copy
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import os.path as osp
import shutil
import tempfile

import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, load_checkpoint
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from robustness_eval import get_results

from mmdet import datasets
from mmdet.apis import init_dist, set_random_seed
from mmdet.core import (eval_map, fast_eval_recall, results2json,
                        wrap_fp16_model)
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector


def coco_eval_with_return(result_files,
                          result_types,
                          coco,
                          max_dets=(100, 300, 1000)):
    for res_type in result_types:
        assert res_type in [
            'proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'
        ]

    if mmcv.is_str(coco):
        coco = COCO(coco)
    assert isinstance(coco, COCO)

    if result_types == ['proposal_fast']:
        ar = fast_eval_recall(result_files, coco, np.array(max_dets))
        for i, num in enumerate(max_dets):
            print('AR@{}\t= {:.4f}'.format(num, ar[i]))
        return

    eval_results = {}
    for res_type in result_types:
        result_file = result_files[res_type]
        assert result_file.endswith('.json')

        coco_dets = coco.loadRes(result_file)
        img_ids = coco.getImgIds()
        iou_type = 'bbox' if res_type == 'proposal' else res_type
        cocoEval = COCOeval(coco, coco_dets, iou_type)
        cocoEval.params.imgIds = img_ids
        if res_type == 'proposal':
            cocoEval.params.useCats = 0
            cocoEval.params.maxDets = list(max_dets)
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        if res_type == 'segm' or res_type == 'bbox':
            metric_names = [
                'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10',
                'AR100', 'ARs', 'ARm', 'ARl'
            ]
            eval_results[res_type] = {
                metric_names[i]: cocoEval.stats[i]
                for i in range(len(metric_names))
            }
        else:
            eval_results[res_type] = cocoEval.stats

    return eval_results


def voc_eval_with_return(result_file,
                         dataset,
                         iou_thr=0.5,
                         print_summary=True,
                         only_ap=True):
    det_results = mmcv.load(result_file)
    gt_bboxes = []
    gt_labels = []
    gt_ignore = []
    for i in range(len(dataset)):
        ann = dataset.get_ann_info(i)
        bboxes = ann['bboxes']
        labels = ann['labels']
        if 'bboxes_ignore' in ann:
            ignore = np.concatenate([
                np.zeros(bboxes.shape[0], dtype=np.bool),
                np.ones(ann['bboxes_ignore'].shape[0], dtype=np.bool)
            ])
            gt_ignore.append(ignore)
            bboxes = np.vstack([bboxes, ann['bboxes_ignore']])
            labels = np.concatenate([labels, ann['labels_ignore']])
        gt_bboxes.append(bboxes)
        gt_labels.append(labels)
    if not gt_ignore:
        gt_ignore = gt_ignore
    if hasattr(dataset, 'year') and dataset.year == 2007:
        dataset_name = 'voc07'
    else:
        dataset_name = dataset.CLASSES
    mean_ap, eval_results = eval_map(
        det_results,
        gt_bboxes,
        gt_labels,
        gt_ignore=gt_ignore,
        scale_ranges=None,
        iou_thr=iou_thr,
        dataset=dataset_name,
        print_summary=print_summary)

    if only_ap:
        eval_results = [{
            'ap': eval_results[i]['ap']
        } for i in range(len(eval_results))]

    return mean_ap, eval_results


def single_gpu_test(model, data_loader, show=False):
    model.eval()
    results = []
    dataset = data_loader.dataset
    prog_bar = mmcv.ProgressBar(len(dataset))
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            result = model(return_loss=False, rescale=not show, **data)
        results.append(result)

        if show:
            model.module.show_result(data, result, dataset.img_norm_cfg)

        batch_size = data['img'][0].size(0)
        for _ in range(batch_size):
            prog_bar.update()
    return results


def multi_gpu_test(model, data_loader, tmpdir=None):
    model.eval()
    results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
    if rank == 0:
        prog_bar = mmcv.ProgressBar(len(dataset))
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            result = model(return_loss=False, rescale=True, **data)
        results.append(result)

        if rank == 0:
            batch_size = data['img'][0].size(0)
            for _ in range(batch_size * world_size):
                prog_bar.update()

    # collect results from all ranks
    results = collect_results(results, len(dataset), tmpdir)

    return results


def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results


def parse_args():
    parser = argparse.ArgumentParser(description='MMDet test detector')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument('--out', help='output result file')
    parser.add_argument(
        '--corruptions',
        type=str,
        nargs='+',
        default='benchmark',
        choices=[
            'all', 'benchmark', 'noise', 'blur', 'weather', 'digital',
            'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise',
            'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow',
            'frost', 'fog', 'brightness', 'contrast', 'elastic_transform',
            'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur',
            'spatter', 'saturate'
        ],
        help='corruptions')
    parser.add_argument(
        '--severities',
        type=int,
        nargs='+',
        default=[0, 1, 2, 3, 4, 5],
        help='corruption severity levels')
    parser.add_argument(
        '--eval',
        type=str,
        nargs='+',
        choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
        help='eval types')
    parser.add_argument(
        '--iou-thr',
        type=float,
        default=0.5,
        help='IoU threshold for pascal voc evaluation')
    parser.add_argument(
        '--summaries',
        type=bool,
        default=False,
        help='Print summaries for every corruption and severity')
    parser.add_argument(
        '--workers', type=int, default=32, help='workers per gpu')
    parser.add_argument('--show', action='store_true', help='show results')
    parser.add_argument('--tmpdir', help='tmp dir for writing some results')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--final-prints',
        type=str,
        nargs='+',
        choices=['P', 'mPC', 'rPC'],
        default='mPC',
        help='corruption benchmark metric to print at the end')
    parser.add_argument(
        '--final-prints-aggregate',
        type=str,
        choices=['all', 'benchmark'],
        default='benchmark',
        help='aggregate all results or only those for benchmark corruptions')
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def main():
    args = parse_args()

    assert args.out or args.show, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out" or "--show"')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True
    if args.workers == 0:
        args.workers = cfg.data.workers_per_gpu

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed)

    if 'all' in args.corruptions:
        corruptions = [
            'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
            'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
            'brightness', 'contrast', 'elastic_transform', 'pixelate',
            'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter',
            'saturate'
        ]
    elif 'benchmark' in args.corruptions:
        corruptions = [
            'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
            'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
            'brightness', 'contrast', 'elastic_transform', 'pixelate',
            'jpeg_compression'
        ]
    elif 'noise' in args.corruptions:
        corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise']
    elif 'blur' in args.corruptions:
        corruptions = [
            'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur'
        ]
    elif 'weather' in args.corruptions:
        corruptions = ['snow', 'frost', 'fog', 'brightness']
    elif 'digital' in args.corruptions:
        corruptions = [
            'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression'
        ]
    elif 'holdout' in args.corruptions:
        corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate']
    elif 'None' in args.corruptions:
        corruptions = ['None']
        args.severities = [0]
    else:
        corruptions = args.corruptions

    aggregated_results = {}
    for corr_i, corruption in enumerate(corruptions):
        aggregated_results[corruption] = {}
        for sev_i, corruption_severity in enumerate(args.severities):
            # evaluate severity 0 (= no corruption) only once
            if corr_i > 0 and corruption_severity == 0:
                aggregated_results[corruption][0] = \
                    aggregated_results[corruptions[0]][0]
                continue

353
            test_data_cfg = copy.deepcopy(cfg.data.test)
354
            # assign corruption and severity
355
356
357
358
359
360
361
362
            if corruption_severity > 0:
                corruption_trans = dict(
                    type='Corrupt',
                    corruption=corruption,
                    severity=corruption_severity)
                # TODO: hard coded "1", we assume that the first step is
                # loading images, which needs to be fixed in the future
                test_data_cfg['pipeline'].insert(1, corruption_trans)
363
364
365
366
367
368
369
370

            # print info
            print('\nTesting {} at severity {}'.format(corruption,
                                                       corruption_severity))

            # build the dataloader
            # TODO: support multiple images per gpu
            #       (only minor changes are needed)
371
            dataset = build_dataset(test_data_cfg)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
            data_loader = build_dataloader(
                dataset,
                imgs_per_gpu=1,
                workers_per_gpu=args.workers,
                dist=distributed,
                shuffle=False)

            # build the model and load checkpoint
            model = build_detector(
                cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
            fp16_cfg = cfg.get('fp16', None)
            if fp16_cfg is not None:
                wrap_fp16_model(model)
            checkpoint = load_checkpoint(
                model, args.checkpoint, map_location='cpu')
            # old versions did not save class info in checkpoints,
            # this walkaround is for backward compatibility
            if 'CLASSES' in checkpoint['meta']:
                model.CLASSES = checkpoint['meta']['CLASSES']
            else:
                model.CLASSES = dataset.CLASSES

            if not distributed:
                model = MMDataParallel(model, device_ids=[0])
                outputs = single_gpu_test(model, data_loader, args.show)
            else:
                model = MMDistributedDataParallel(model.cuda())
                outputs = multi_gpu_test(model, data_loader, args.tmpdir)

            rank, _ = get_dist_info()
            if args.out and rank == 0:
                eval_results_filename = (
                    osp.splitext(args.out)[0] + '_results' +
                    osp.splitext(args.out)[1])
                mmcv.dump(outputs, args.out)
                eval_types = args.eval
                if cfg.dataset_type == 'VOCDataset':
                    if eval_types:
                        for eval_type in eval_types:
                            if eval_type == 'bbox':
                                test_dataset = mmcv.runner.obj_from_dict(
                                    cfg.data.test, datasets)
                                mean_ap, eval_results = \
                                    voc_eval_with_return(
                                        args.out, test_dataset,
                                        args.iou_thr, args.summaries)
                                aggregated_results[corruption][
                                    corruption_severity] = eval_results
                            else:
                                print('\nOnly "bbox" evaluation \
                                is supported for pascal voc')
                else:
                    if eval_types:
                        print('Starting evaluate {}'.format(
                            ' and '.join(eval_types)))
                        if eval_types == ['proposal_fast']:
                            result_file = args.out
                        else:
                            if not isinstance(outputs[0], dict):
                                result_files = results2json(
                                    dataset, outputs, args.out)
                            else:
                                for name in outputs[0]:
                                    print('\nEvaluating {}'.format(name))
                                    outputs_ = [out[name] for out in outputs]
                                    result_file = args.out
                                    + '.{}'.format(name)
                                    result_files = results2json(
                                        dataset, outputs_, result_file)
                        eval_results = coco_eval_with_return(
                            result_files, eval_types, dataset.coco)
                        aggregated_results[corruption][
                            corruption_severity] = eval_results
                    else:
                        print('\nNo task was selected for evaluation;'
                              '\nUse --eval to select a task')

            # save results after each evaluation
            mmcv.dump(aggregated_results, eval_results_filename)

    # print filan results
    print('\nAggregated results:')
    prints = args.final_prints
    aggregate = args.final_prints_aggregate

    if cfg.dataset_type == 'VOCDataset':
        get_results(
            eval_results_filename,
            dataset='voc',
            prints=prints,
            aggregate=aggregate)
    else:
        get_results(
            eval_results_filename,
            dataset='coco',
            prints=prints,
            aggregate=aggregate)


if __name__ == '__main__':
    main()