"ppocr/utils/en_dict.txt" did not exist on "9198059544d6ae765ff69d8ad94ce7ded0594f45"
rpn.py 3.08 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
import mmcv

from mmdet.core import tensor2imgs, bbox_mapping
from .base import BaseDetector
5
from .test_mixins import RPNTestMixin
Kai Chen's avatar
Kai Chen committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from .. import builder


class RPN(BaseDetector, RPNTestMixin):

    def __init__(self,
                 backbone,
                 neck,
                 rpn_head,
                 train_cfg,
                 test_cfg,
                 pretrained=None):
        super(RPN, self).__init__()
        self.backbone = builder.build_backbone(backbone)
        self.neck = builder.build_neck(neck) if neck is not None else None
        self.rpn_head = builder.build_rpn_head(rpn_head)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)

    def init_weights(self, pretrained=None):
27
        super(RPN, self).init_weights(pretrained)
Kai Chen's avatar
Kai Chen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.backbone.init_weights(pretrained=pretrained)
        if self.neck is not None:
            self.neck.init_weights()
        self.rpn_head.init_weights()

    def extract_feat(self, img):
        x = self.backbone(img)
        if self.neck is not None:
            x = self.neck(x)
        return x

    def forward_train(self, img, img_meta, gt_bboxes=None):
        if self.train_cfg.rpn.get('debug', False):
            self.rpn_head.debug_imgs = tensor2imgs(img)

        x = self.extract_feat(img)
        rpn_outs = self.rpn_head(x)

        rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn)
        losses = self.rpn_head.loss(*rpn_loss_inputs)
        return losses

    def simple_test(self, img, img_meta, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(x, img_meta, self.test_cfg.rpn)
        if rescale:
            for proposals, meta in zip(proposal_list, img_meta):
                proposals[:, :4] /= meta['scale_factor']
        # TODO: remove this restriction
        return proposal_list[0].cpu().numpy()

    def aug_test(self, imgs, img_metas, rescale=False):
        proposal_list = self.aug_test_rpn(
            self.extract_feats(imgs), img_metas, self.test_cfg.rpn)
        if not rescale:
            for proposals, img_meta in zip(proposal_list, img_metas[0]):
                img_shape = img_meta['img_shape']
                scale_factor = img_meta['scale_factor']
                flip = img_meta['flip']
                proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape,
                                                scale_factor, flip)
        # TODO: remove this restriction
        return proposal_list[0].cpu().numpy()

    def show_result(self, data, result, img_norm_cfg):
        """Show RPN proposals on the image.

        Although we assume batch size is 1, this method supports arbitrary
        batch size.
        """
        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)
        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]
            mmcv.imshow_bboxes(img_show, result, top_k=20)