modulated_dcn.py 6.52 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import torch
from torch import nn
from torch.nn.modules.utils import _pair

from ..functions.modulated_dcn_func import DeformRoIPoolingFunction
from ..functions.modulated_dcn_func import ModulatedDeformConvFunction


class ModulatedDeformConv(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 dilation=1,
                 deformable_groups=1,
                 no_bias=True):
        super(ModulatedDeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.deformable_groups = deformable_groups
        self.no_bias = no_bias

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels, *self.kernel_size))
        self.bias = nn.Parameter(torch.zeros(out_channels))
        self.reset_parameters()
        if self.no_bias:
            self.bias.requires_grad = False

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        self.bias.data.zero_()

    def forward(self, input, offset, mask):
        func = ModulatedDeformConvFunction(
            self.stride, self.padding, self.dilation, self.deformable_groups)
        return func(input, offset, mask, self.weight, self.bias)


class ModulatedDeformConvPack(ModulatedDeformConv):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 dilation=1,
                 deformable_groups=1,
                 no_bias=False):
        super(ModulatedDeformConvPack,
              self).__init__(in_channels, out_channels, kernel_size, stride,
                             padding, dilation, deformable_groups, no_bias)

        self.conv_offset_mask = nn.Conv2d(
            self.in_channels,
            self.deformable_groups * 3 * self.kernel_size[0] *
            self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=(self.stride, self.stride),
            padding=(self.padding, self.padding),
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset_mask.weight.data.zero_()
        self.conv_offset_mask.bias.data.zero_()

    def forward(self, input):
        out = self.conv_offset_mask(input)
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
        func = ModulatedDeformConvFunction(
            self.stride, self.padding, self.dilation, self.deformable_groups)
        return func(input, offset, mask, self.weight, self.bias)


class DeformRoIPooling(nn.Module):

    def __init__(self,
                 spatial_scale,
                 pooled_size,
                 output_dim,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0):
        super(DeformRoIPooling, self).__init__()
        self.spatial_scale = spatial_scale
        self.pooled_size = pooled_size
        self.out_size = pooled_size
        self.output_dim = output_dim
        self.no_trans = no_trans
        self.group_size = group_size
        self.part_size = pooled_size if part_size is None else part_size
        self.sample_per_part = sample_per_part
        self.trans_std = trans_std
        self.func = DeformRoIPoolingFunction(
            self.spatial_scale, self.pooled_size, self.output_dim,
            self.no_trans, self.group_size, self.part_size,
            self.sample_per_part, self.trans_std)

    def forward(self, data, rois, offset):

        if self.no_trans:
            offset = data.new()
        return self.func(data, rois, offset)


class ModulatedDeformRoIPoolingPack(DeformRoIPooling):

    def __init__(self,
                 spatial_scale,
                 pooled_size,
                 output_dim,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0,
                 deform_fc_dim=1024):
        super(ModulatedDeformRoIPoolingPack, self).__init__(
            spatial_scale, pooled_size, output_dim, no_trans, group_size,
            part_size, sample_per_part, trans_std)

        self.deform_fc_dim = deform_fc_dim

        if not no_trans:
            self.func_offset = DeformRoIPoolingFunction(
                self.spatial_scale, self.pooled_size, self.output_dim, True,
                self.group_size, self.part_size, self.sample_per_part,
                self.trans_std)
            self.offset_fc = nn.Sequential(
                nn.Linear(
                    self.pooled_size * self.pooled_size * self.output_dim,
                    self.deform_fc_dim), nn.ReLU(inplace=True),
                nn.Linear(self.deform_fc_dim, self.deform_fc_dim),
                nn.ReLU(inplace=True),
                nn.Linear(self.deform_fc_dim,
                          self.pooled_size * self.pooled_size * 2))
            self.offset_fc[4].weight.data.zero_()
            self.offset_fc[4].bias.data.zero_()
            self.mask_fc = nn.Sequential(
                nn.Linear(
                    self.pooled_size * self.pooled_size * self.output_dim,
                    self.deform_fc_dim), nn.ReLU(inplace=True),
                nn.Linear(self.deform_fc_dim,
                          self.pooled_size * self.pooled_size * 1),
                nn.Sigmoid())
            self.mask_fc[2].weight.data.zero_()
            self.mask_fc[2].bias.data.zero_()

    def forward(self, data, rois):
        if self.no_trans:
            offset = data.new()
        else:
            n = rois.shape[0]
            offset = data.new()
            x = self.func_offset(data, rois, offset)
            offset = self.offset_fc(x.view(n, -1))
            offset = offset.view(n, 2, self.pooled_size, self.pooled_size)
            mask = self.mask_fc(x.view(n, -1))
            mask = mask.view(n, 1, self.pooled_size, self.pooled_size)
            feat = self.func(data, rois, offset) * mask
            return feat
        return self.func(data, rois, offset)