env.py 1.48 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import logging
import os
import random

import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from mmcv.runner import get_dist_info


def init_dist(launcher, backend='nccl', **kwargs):
    if mp.get_start_method(allow_none=True) is None:
        mp.set_start_method('spawn')
    if launcher == 'pytorch':
        _init_dist_pytorch(backend, **kwargs)
    elif launcher == 'mpi':
        _init_dist_mpi(backend, **kwargs)
    elif launcher == 'slurm':
        _init_dist_slurm(backend, **kwargs)
    else:
        raise ValueError('Invalid launcher type: {}'.format(launcher))


def _init_dist_pytorch(backend, **kwargs):
    # TODO: use local_rank instead of rank % num_gpus
    rank = int(os.environ['RANK'])
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(rank % num_gpus)
    dist.init_process_group(backend=backend, **kwargs)


def _init_dist_mpi(backend, **kwargs):
    raise NotImplementedError


def _init_dist_slurm(backend, **kwargs):
    raise NotImplementedError


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def get_root_logger(log_level=logging.INFO):
    logger = logging.getLogger()
    if not logger.hasHandlers():
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(message)s',
            level=log_level)
    rank, _ = get_dist_info()
    if rank != 0:
        logger.setLevel('ERROR')
    return logger