fast_rcnn_r50_fpn_1x.py 3.54 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# model settings
model = dict(
    type='FastRCNN',
    pretrained='modelzoo://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    bbox_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=dict(
Kai Chen's avatar
Kai Chen committed
23
        type='SharedFCBBoxHead',
pangjm's avatar
pangjm committed
24
25
26
27
28
29
30
31
32
33
34
        num_fcs=2,
        in_channels=256,
        fc_out_channels=1024,
        roi_feat_size=7,
        num_classes=81,
        target_means=[0., 0., 0., 0.],
        target_stds=[0.1, 0.1, 0.2, 0.2],
        reg_class_agnostic=False))
# model training and testing settings
train_cfg = dict(
    rcnn=dict(
Kai Chen's avatar
Kai Chen committed
35
36
37
38
39
40
41
42
43
44
45
46
        assigner=dict(
            pos_iou_thr=0.5,
            neg_iou_thr=0.5,
            min_pos_iou=0.5,
            ignore_iof_thr=-1),
        sampler=dict(
            num=512,
            pos_fraction=0.25,
            neg_pos_ub=-1,
            add_gt_as_proposals=True,
            pos_balance_sampling=False,
            neg_balance_thr=0),
pangjm's avatar
pangjm committed
47
48
        pos_weight=-1,
        debug=False))
49
50
51
test_cfg = dict(
    rcnn=dict(
        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
pangjm's avatar
pangjm committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
67
        proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_train2017.pkl',
pangjm's avatar
pangjm committed
68
69
70
71
72
73
74
75
76
77
        flip_ratio=0.5,
        with_mask=False,
        with_crowd=True,
        with_label=True),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
Kai Chen's avatar
Kai Chen committed
78
        proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl',
pangjm's avatar
pangjm committed
79
80
81
82
83
84
85
86
87
88
89
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_crowd=True,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
Kai Chen's avatar
Kai Chen committed
90
        proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl',
pangjm's avatar
pangjm committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_label=False,
        test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
pangjm's avatar
pangjm committed
109
    interval=50,
pangjm's avatar
pangjm committed
110
111
112
113
114
115
116
117
118
119
120
121
122
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/fast_rcnn_r50_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]