ssd512_coco.py 3.82 KB
Newer Older
1
benchmark = True
yhcao6's avatar
yhcao6 committed
2
# model settings
yhcao6's avatar
fix  
yhcao6 committed
3
input_size = 512
yhcao6's avatar
yhcao6 committed
4
5
model = dict(
    type='SingleStageDetector',
yhcao6's avatar
yhcao6 committed
6
    pretrained='open-mmlab://vgg16_caffe',
yhcao6's avatar
yhcao6 committed
7
8
    backbone=dict(
        type='SSDVGG',
yhcao6's avatar
fix  
yhcao6 committed
9
        input_size=input_size,
yhcao6's avatar
yhcao6 committed
10
11
12
13
14
15
16
17
18
        depth=16,
        with_last_pool=False,
        ceil_mode=True,
        out_indices=(3, 4),
        out_feature_indices=(22, 34),
        l2_norm_scale=20),
    neck=None,
    bbox_head=dict(
        type='SSDHead',
yhcao6's avatar
fix  
yhcao6 committed
19
        input_size=input_size,
yhcao6's avatar
yhcao6 committed
20
21
22
        in_channels=(512, 1024, 512, 256, 256, 256, 256),
        num_classes=81,
        anchor_strides=(8, 16, 32, 64, 128, 256, 512),
yhcao6's avatar
fix  
yhcao6 committed
23
        basesize_ratio_range=(0.1, 0.9),
yhcao6's avatar
yhcao6 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        anchor_ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]),
        target_means=(.0, .0, .0, .0),
        target_stds=(0.1, 0.1, 0.2, 0.2)))
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
        pos_iou_thr=0.5,
        neg_iou_thr=0.5,
        min_pos_iou=0.,
        ignore_iof_thr=-1,
        gt_max_assign_all=False),
    smoothl1_beta=1.,
    allowed_border=-1,
    pos_weight=-1,
    neg_pos_ratio=3,
    debug=False)
test_cfg = dict(
    nms=dict(type='nms', iou_thr=0.45),
    min_bbox_size=0,
    score_thr=0.02,
    max_per_img=200)
# model training and testing settings
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
data = dict(
yhcao6's avatar
yhcao6 committed
51
52
    imgs_per_gpu=8,
    workers_per_gpu=3,
yhcao6's avatar
yhcao6 committed
53
54
    train=dict(
        type='RepeatDataset',
55
        times=5,
yhcao6's avatar
yhcao6 committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        dataset=dict(
            type=dataset_type,
            ann_file=data_root + 'annotations/instances_train2017.json',
            img_prefix=data_root + 'train2017/',
            img_scale=(512, 512),
            img_norm_cfg=img_norm_cfg,
            size_divisor=None,
            flip_ratio=0.5,
            with_mask=False,
            with_crowd=False,
            with_label=True,
            test_mode=False,
            extra_aug=dict(
                photo_metric_distortion=dict(
                    brightness_delta=32,
                    contrast_range=(0.5, 1.5),
                    saturation_range=(0.5, 1.5),
                    hue_delta=18),
                expand=dict(
                    mean=img_norm_cfg['mean'],
                    to_rgb=img_norm_cfg['to_rgb'],
                    ratio_range=(1, 4)),
                random_crop=dict(
                    min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3)),
yhcao6's avatar
fix  
yhcao6 committed
80
            resize_keep_ratio=False)),
yhcao6's avatar
yhcao6 committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(512, 512),
        img_norm_cfg=img_norm_cfg,
        size_divisor=None,
        flip_ratio=0,
        with_mask=False,
        with_label=False,
        test_mode=True,
        resize_keep_ratio=False),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(512, 512),
        img_norm_cfg=img_norm_cfg,
        size_divisor=None,
        flip_ratio=0,
        with_mask=False,
        with_label=False,
        test_mode=True,
        resize_keep_ratio=False))
# optimizer
yhcao6's avatar
yhcao6 committed
106
optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
yhcao6's avatar
yhcao6 committed
107
108
109
110
111
112
113
optimizer_config = dict()
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
114
    step=[16, 22])
yhcao6's avatar
yhcao6 committed
115
116
117
118
119
120
121
122
123
124
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
125
total_epochs = 24
yhcao6's avatar
yhcao6 committed
126
127
128
129
130
131
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/ssd512_coco'
load_from = None
resume_from = None
workflow = [('train', 1)]